Variants at IRX4 as prostate cancer expression quantitative trait loci

被引:0
|
作者
Xing Xu
Wasay M Hussain
Joseph Vijai
Kenneth Offit
Mark A Rubin
Francesca Demichelis
Robert J Klein
机构
[1] Clinical Genetics Service,Department of Medicine
[2] Memorial Sloan-Kettering Cancer Center,Department of Pathology and Laboratory Medicine
[3] Program in Cancer Biology and Genetics,undefined
[4] Memorial Sloan-Kettering Cancer Center,undefined
[5] Weill Cornell Medical College,undefined
[6] Institute for Computational Biomedicine,undefined
[7] Weill Cornell Medical College,undefined
[8] Centre for Integrative Biology,undefined
[9] CIBIO,undefined
[10] University of Trento,undefined
来源
European Journal of Human Genetics | 2014年 / 22卷
关键词
expression quantitative trait loci; eQTL; prostate cancer; GWAS; risk SNPs;
D O I
暂无
中图分类号
学科分类号
摘要
Genome-wide association studies (GWAS) have identified numerous prostate cancer-associated risk loci. Some variants at these loci may be regulatory and influence expression of nearby genes. Such loci are known as cis-expression quantitative trait loci (cis-eQTL). As cis-eQTLs are highly tissue-specific, we asked if GWAS-identified prostate cancer risk loci are cis-eQTLs in human prostate tumor tissues. We investigated 50 prostate cancer samples for their genotype at 59 prostate cancer risk-associated single-nucleotide polymorphisms (SNPs) and performed cis-eQTL analysis of transcripts from paired primary tumors within two megabase windows. We tested 586 transcript–genotype associations, of which 27 were significant (false discovery rate ≤10%). An equivalent eQTL analysis of the same prostate cancer risk loci in lymphoblastoid cell lines did not result in any significant associations. The top-ranked cis-eQTL involved the IRX4 (Iroquois homeobox protein 4) transcript and rs12653946, tagged by rs10866528 in our study (P=4.91 × 10−5). Replication studies, linkage disequilibrium, and imputation analyses highlight population specificity at this locus. We independently validated IRX4 as a potential prostate cancer risk gene through cis-eQTL analysis of prostate cancer risk variants. Cis-eQTL analysis in relevant tissues, even with a small sample size, can be a powerful method to expedite functional follow-up of GWAS.
引用
收藏
页码:558 / 563
页数:5
相关论文
共 50 条
  • [1] Variants at IRX4 as prostate cancer expression quantitative trait loci
    Xu, Xing
    Hussain, Wasay M.
    Vijai, Joseph
    Offit, Kenneth
    Rubin, Mark A.
    Demichelis, Francesca
    Klein, Robert J.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2014, 22 (04) : 558 - 563
  • [2] Characterizing the Relationship between Expression Quantitative Trait Loci (eQTLs), DNA Methylation Quantitative Trait Loci (mQTLs), and Breast Cancer Risk Variants
    Ho, Peh Joo
    Khng, Alexis
    Tan, Benita Kiat-Tee
    Khor, Chiea Chuen
    Tan, Ern Yu
    Lim, Geok Hoon
    Yuan, Jian-Min
    Tan, Su-Ming
    Chang, Xuling
    Tan, Veronique Kiak Mien
    Sim, Xueling
    Dorajoo, Rajkumar
    Koh, Woon-Puay
    Hartman, Mikael
    Li, Jingmei
    CANCERS, 2024, 16 (11)
  • [3] Identification and Characterization of Alternatively Spliced Transcript Isoforms of IRX4 in Prostate Cancer
    Fernando, Achala
    Liyanage, Chamikara
    Moradi, Afshin
    Janaththani, Panchadsaram
    Batra, Jyotsna
    GENES, 2021, 12 (05)
  • [4] Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci
    Hulur, Imge
    Gamazon, Eric R.
    Skol, Andrew D.
    Xicola, Rosa M.
    Llor, Xavier
    Onel, Kenan
    Ellis, Nathan A.
    Kupfer, Sonia S.
    BMC GENOMICS, 2015, 16
  • [5] Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci
    Imge Hulur
    Eric R Gamazon
    Andrew D Skol
    Rosa M Xicola
    Xavier Llor
    Kenan Onel
    Nathan A Ellis
    Sonia S Kupfer
    BMC Genomics, 16
  • [6] Expression quantitative trait loci influence DNA damage-induced apoptosis in cancer
    Bigge, Jessica
    Koebbe, Laura L.
    Giel, Ann-Sophie
    Bornholdt, Dorothea
    Buerfent, Benedikt
    Dasmeh, Pouria
    Zink, Alexander M.
    Maj, Carlo
    Schumacher, Johannes
    BMC GENOMICS, 2024, 25 (01):
  • [7] Top associated SNPs in prostate cancer are significantly enriched in cis-expression quantitative trait loci and at transcription factor binding sites
    Jiang, Junfeng
    Jia, Peilin
    Shen, Bairong
    Zhao, Zhongming
    ONCOTARGET, 2014, 5 (15) : 6168 - 6177
  • [8] Coexpression and expression quantitative trait loci analyses of the angiogenesis gene-gene interaction network in prostate cancer
    Lin, Hui-Yi
    Cheng, Chia-Ho
    Chen, Dung-Tsa
    Chen, Y. Ann
    Park, Jong Y.
    TRANSLATIONAL CANCER RESEARCH, 2016, 5 : S951 - +
  • [9] Expression quantitative trait loci analysis in plants
    Druka, Arnis
    Potokina, Elena
    Luo, Zewei
    Jiang, Ning
    Chen, Xinwei
    Kearsey, Mike
    Waugh, Robbie
    PLANT BIOTECHNOLOGY JOURNAL, 2010, 8 (01) : 10 - 27
  • [10] Expression quantitative trait loci: present and future
    Nica, Alexandra C.
    Dermitzakis, Emmanouil T.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 368 (1620)