The Clifford-Fourier Transform \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}_o}$$\end{document} and Monogenic Extensions

被引:0
|
作者
Arnoldo Bezanilla López
Omar León Sánchez
机构
[1] Benemérita Universidad Autónoma de Puebla,
[2] University of Waterloo,undefined
关键词
11E88; 15A66; 30G30; 42B10; 44A45; Clifford algebra; monogenic functions; Fourier transform;
D O I
10.1007/s00006-010-0275-z
中图分类号
学科分类号
摘要
In the last decade several versions of the Fourier transform have been formulated in the framework of Clifford algebra. We present a (Clifford-Fourier) transform, constructed using the geometric properties of Clifford algebra. We show the corresponding results of operational calculus, and a connection between the Fourier transform and this new transform. We obtain a technique to construct monogenic extensions of a certain type of continuous functions, and versions of the Paley-Wiener theorems are formulated.
引用
收藏
页码:757 / 772
页数:15
相关论文
共 50 条