Morita Equivalence of Sketches

被引:0
|
作者
Jiří Adámek
Francis Borceux
机构
[1] Technical University of Braunschweig,Département de Mathématique
[2] Université Catholique de Louvain,undefined
来源
Applied Categorical Structures | 2000年 / 8卷
关键词
Morita equivalence; sketch;
D O I
暂无
中图分类号
学科分类号
摘要
Equivalence of sketches S and T means the equivalence of their categories ModS and ModT of all Set-valued models. E. Vitale and the second author have characterized equivalence of limit-sketches by means of bimodels, where a bimodel for limit sketches S and T is a model of S in the category ModT. For general sketches, we show that an analogous result holds provided that ModT is substituted by a more complex category; e.g., in case of limit-coproduct sketches, that category is ∏(ModT), the free product completion of ModT.
引用
收藏
页码:503 / 517
页数:14
相关论文
共 50 条
  • [11] Morita Equivalence for Rings with Involution
    Ara P.
    Algebras and Representation Theory, 1999, 2 (3) : 227 - 247
  • [12] Morita Equivalence for Factorisable Semigroups
    Yu Qun CHEN Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2001, 17 (03) : 437 - 454
  • [13] Morita equivalence of finite semigroups
    Reimaa, Ulo
    Laan, Valdis
    Tart, Lauri
    SEMIGROUP FORUM, 2021, 102 (03) : 842 - 860
  • [14] Morita equivalence for graded rings
    Abrams, Gene
    Ruiz, Efren
    Tomforde, Mark
    JOURNAL OF ALGEBRA, 2023, 617 : 79 - 112
  • [15] Poisson geometry and Morita equivalence
    Bursztyn, Henrique
    Weinstein, Alan
    POISSON GEOMETRY, DEFORMATION QUANTISATION AND GROUP REPRESENTATIONS, 2005, 323 : 1 - +
  • [16] Morita equivalence for factorisable semigroups
    Chen, YQ
    Shum, KP
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (03): : 437 - 454
  • [17] Modular Curvature and Morita Equivalence
    Matthias Lesch
    Henri Moscovici
    Geometric and Functional Analysis, 2016, 26 : 818 - 873
  • [18] Hausdorff Morita equivalence of singular foliations
    Alfonso Garmendia
    Marco Zambon
    Annals of Global Analysis and Geometry, 2019, 55 : 99 - 132
  • [19] ISOMORPHISM AND MORITA EQUIVALENCE OF GRAPH ALGEBRAS
    Abrams, Gene
    Tomforde, Mark
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (07) : 3733 - 3767
  • [20] Noncommutative Line Bundle and Morita Equivalence
    Branislav Jurčo
    Peter Schupp
    Julius Wess
    Letters in Mathematical Physics, 2002, 61 : 171 - 186