Representable Effect Algebras and Observables

被引:0
作者
Anatolij Dvurečenskij
机构
[1] Slovak Academy of Sciences,Mathematical Institute
[2] Palacký University,Department of Algebra and Geometry
来源
International Journal of Theoretical Physics | 2014年 / 53卷
关键词
Effect algebra; Compatibility; Strong-compatible; Internal compatibility; Monotone ; -completeness; Homogeneous algebra; Observable; Block;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a class of monotone σ-complete effect algebras, called representable, which are σ-homomorphic images of a class of monotone σ-complete effect algebras of functions taking values in the interval [0, 1] and with effect algebra operations defined by points. We exhibit different types of compatibilities and show their connection to representability. Finally, we study observables and show situations when information of an observable on all intervals of the form (−∞, t) gives full information about the observable.
引用
收藏
页码:2855 / 2866
页数:11
相关论文
共 18 条
[1]  
Buhagiar D(2006)Loomis-Sikorski representation of monotone σ-complete effect algebras Fuzzy Sets Syst. 157 683-690
[2]  
Chetcuti E(1968)Spectral theory in quantum logics Inter. J. Theor. Phys. 1 285-297
[3]  
Dvurečenskij A(1958)Algebraic analysis of many-valued logics Trans. Am. Math. Soc. 88 467-490
[4]  
Catlin D(2000)Loomis–Sikorski theorem for σ-complete MV-algebras and ℓ-groups J. Aust. Math. Soc. Ser. A 68 261-277
[5]  
Chang CC(2002)On effect algebras which can be covered by MV-algebras Inter. J. Theor. Phys. 41 221-229
[6]  
Dvurečenskij A(2014)Observables on quantum structures Inf. Sci. 262 215-222
[7]  
Dvurečenskij A(1994)Effect algebras and unsharp quantum logics Found. Phys. 24 1331-1352
[8]  
Dvurečenskij A(2001)Blocks of homogeneous effect algebras Bull. Aust. Math. Soc. 64 81-98
[9]  
Kuková M(1999)Tensor products and the Loomis–Sikorski theorem for MV-algebras, Adv. Appl. Math. 22 227-248
[10]  
Foulis DJ(2013)Homogeneous orthocomplete effect algebras are covered by MV-algebras Fuzzy Sets Syst. 210 89-101