The Discrete Evolution Model of Bak and Sneppen is Conjugate to the Classical Contact Process

被引:0
|
作者
Christoph Bandt
机构
[1] University of Greifswald,Institute of Mathematics
来源
Journal of Statistical Physics | 2005年 / 120卷
关键词
Contact process; cellular automata; thinning; self-organized criticality; evolution model;
D O I
暂无
中图分类号
学科分类号
摘要
Two fundamental models of critical phenomena are connected. We show that the discrete Bak–Sneppen evolution model is conjugate to the classical contact process. This holds in discrete and continuous time, on all graphs and for random as well as for deterministic choice of neighbors. Thus the extensive theory for the contact process applies to the discrete Bak–Sneppen model, too.
引用
收藏
页码:685 / 693
页数:8
相关论文
共 35 条
  • [1] The discrete evolution model of Bak and Sneppen is conjugate to the classical contact process
    Bandt, C
    JOURNAL OF STATISTICAL PHYSICS, 2005, 120 (3-4) : 685 - 693
  • [2] Non-Triviality of a Discrete Bak–Sneppen Evolution Model
    Ronald Meester
    Dmitri Znamenski
    Journal of Statistical Physics, 2002, 109 : 987 - 1004
  • [3] Non-triviality of a discrete Bak-Sneppen evolution model
    Meester, R
    Znamenski, D
    JOURNAL OF STATISTICAL PHYSICS, 2002, 109 (5-6) : 987 - 1004
  • [4] Rigorous Upper Bound for the Discrete Bak–Sneppen Model
    Stanislav Volkov
    Journal of Statistical Physics, 2022, 186
  • [5] Limit behavior of the Bak-Sneppen evolution model
    Meester, R
    Znamenski, D
    ANNALS OF PROBABILITY, 2003, 31 (04) : 1986 - 2002
  • [6] Rigorous Upper Bound for the Discrete Bak-Sneppen Model
    Volkov, Stanislav
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (01)
  • [7] The Interaction Light Cone of the Discrete Bak–Sneppen, Contact and other local processes
    Tom Bannink
    Harry Buhrman
    András Gilyén
    Mario Szegedy
    Journal of Statistical Physics, 2019, 176 : 1500 - 1525
  • [8] The Interaction Light Cone of the Discrete Bak-Sneppen, Contact and other local processes
    Bannink, Tom
    Buhrman, Harry
    Gilyen, Andras
    Szegedy, Mario
    JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (06) : 1500 - 1525
  • [9] Symbiosis in the Bak-Sneppen model for biological evolution with economic applications
    Bartolozzi, M.
    Leinweber, D. B.
    Thomas, A. W.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 365 (02) : 499 - 508
  • [10] Fitness noise in the Bak-Sneppen evolution model in high dimensions
    Chhimpa, Rahul
    Singh, Abha
    Yadav, Avinash Chand
    PHYSICAL REVIEW E, 2024, 110 (03)