[5] The Netherlands (e-mail: puite@math.ruu.nl/schellin@math.ruu.nl)
,undefined
来源:
Archive for Mathematical Logic
|
1997年
/
37卷
关键词:
Correctness Criterion;
Paired Graph;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Having defined a notion of homology for paired graphs, Métayer ([Ma]) proves a homological correctness criterion for proof nets, and states that for any proof net \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$G$\end{document} there exists a Jordan-Hölder decomposition of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\mathsf H}_0(G)$\end{document}. This decomposition is determined by a certain enumeration of the pairs in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$G$\end{document}. We correct his proof of this fact and show that there exists a 1-1 correspondence between these Jordan-Hölder decompositions of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
${\mathsf H}_0(G)$\end{document} and the possible ‘construction-orders’ of the par-net underlying \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$G$\end{document}.