On the Jordan-Hölder decomposition of proof nets

被引:0
作者
Quintijn Puite
Harold Schellinx
机构
[1] Mathematical Institute,
[2] Utrecht University,undefined
[3] P.O. Box 80.010,undefined
[4] NL-3508 TA Utrecht,undefined
[5] The Netherlands (e-mail: puite@math.ruu.nl/schellin@math.ruu.nl) ,undefined
来源
Archive for Mathematical Logic | 1997年 / 37卷
关键词
Correctness Criterion; Paired Graph;
D O I
暂无
中图分类号
学科分类号
摘要
Having defined a notion of homology for paired graphs, Métayer ([Ma]) proves a homological correctness criterion for proof nets, and states that for any proof net \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G$\end{document} there exists a Jordan-Hölder decomposition of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathsf H}_0(G)$\end{document}. This decomposition is determined by a certain enumeration of the pairs in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G$\end{document}. We correct his proof of this fact and show that there exists a 1-1 correspondence between these Jordan-Hölder decompositions of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\mathsf H}_0(G)$\end{document} and the possible ‘construction-orders’ of the par-net underlying \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $G$\end{document}.
引用
收藏
页码:59 / 65
页数:6
相关论文
empty
未找到相关数据