Maximal autocorrelation functions in functional data analysis

被引:0
作者
Giles Hooker
Steven Roberts
机构
[1] Cornell University,Department of Biological Statistics and Computational Biology
[2] Australian National University,Research School of Finance, Actuarial Studies and Applied Statistics
来源
Statistics and Computing | 2016年 / 26卷
关键词
Factor rotation; Functional data; Interpretability ; Principal components analysis;
D O I
暂无
中图分类号
学科分类号
摘要
This paper proposes a new factor rotation for the context of functional principal components analysis. This rotation seeks to re-express a functional subspace in terms of directions of decreasing smoothness as represented by a generalized smoothing metric. The rotation can be implemented simply and we show on two examples that this rotation can improve the interpretability of the leading components.
引用
收藏
页码:945 / 950
页数:5
相关论文
共 49 条
  • [1] Chiou J-M(2004)Functional response models Stat. Sin. 14 659-677
  • [2] Müller H-G(2014)Decompositions using maximum signal factors J. Chemom. 28 663-671
  • [3] Wang J-L(2011)Penalized functional regression J. Comput. Graph. Stat. 20 830-851
  • [4] Gallagher NB(2006)Properties of principal component methods for functional and longitudinal data analysis Ann. Stat. 34 1493-1517
  • [5] Shaver JM(2009)A comparison of PCA and MAF for ToF-SIMS image interpretation Surf. Interface Anal. 41 666-674
  • [6] Bishop R(1958)The varimax criterion for analytic rotation in factor analysis Psychometrika 23 187-200
  • [7] Roginski RT(2012)Functional factor analysis for periodic remote sensing data Ann. Appl. Stat. 6 601-624
  • [8] Wise BM(2007)Generation of synthetic sequences of electricity demand: application in South Australia Energy 32 2230-2243
  • [9] Goldsmith J(2008)Generation of synthetic sequences of half-hourly temperature Environmetrics 19 818-835
  • [10] Bobb J(2008)Functional additive models J. Am. Stat. Assoc. 103 1534-1544