On the symmetry orbits of black holes in non-linear sigma models

被引:0
作者
Josef Lindman Hörnlund
机构
[1] Université Libre de Bruxelles & International Solvay Institutes,Service de Physique Théorique et Mathématique
来源
Journal of High Energy Physics | / 2011卷
关键词
Classical Theories of Gravity; Black Holes; Supergravity Models; Global Symmetries;
D O I
暂无
中图分类号
学科分类号
摘要
Breitenlohner, Maison and Gibbons claimed some time ago that all bona-fide four dimensional asymptotically flat non-degenerate black holes are in a symmetry orbit of theSchwarzschild/Kerrblackholeinalargesetoftheoriesofgravityandmatter. Their argument involved reducing the theory on a time-like Killing vector field and analysing the resulting three dimensional sigma model of maps to a symmetric space G/H. In the construction of their proof, they conjectured the existence of a suitable H-transformation that always remove the electromagnetic charges of the four dimensional black hole solution. We show in this short note that such a transformation does not exist in general, and discuss a set of boundary conditions on the horizon for the scalar fields in the sigma model that yield black holes for which the result by Breitenlohner, Maison and Gibbonscan beapplied.
引用
收藏
相关论文
共 13 条
  • [1] Geroch RP(1971)A method for generating solutions of Einstein’s equations J. Math. Phys. 12 918-undefined
  • [2] Breitenlohner P(1988)Four-dimensional black holes from Kaluza-Klein theories Commun. Math. Phys. 120 295-undefined
  • [3] Maison D(2000)Duality and hidden symmetries in gravitational theories Lect. Notes Phys. 540 273-undefined
  • [4] Gibbons GW(1957)Les espaces symétriques noncompacts Ann. Sci. Ecole Norm. Sup 3 85-undefined
  • [5] Maison D(2009)Universal BPS structure of stationary supergravity solutions JHEP 07 003-undefined
  • [6] Berger M(1985)A simple proof of the generalized electrostatic Israel theorem General Relativity and Gravitation 17 761-undefined
  • [7] Bossard G(1979)The orbits of affine symmetric spaces under the action of minimal parabolic subgroups J. Math. Soc. Japan 31 331-undefined
  • [8] Nicolai H(2010)Extremal limits of the Cvetič-Youm black hole and nilpotent orbits of G JHEP 11 062-undefined
  • [9] Stelle KS(undefined)undefined undefined undefined undefined-undefined
  • [10] Simon W(undefined)undefined undefined undefined undefined-undefined