On Navier–Stokes Equations with Slip Boundary Conditions in an Infinite Pipe

被引:0
|
作者
Piotr Bogusław Mucha
机构
[1] Warsaw University,Institute of Applied Mathematics and Mechanics
来源
Acta Applicandae Mathematica | 2003年 / 76卷
关键词
domains with unbounded boundaries; steady Navier–Stokes equations; slip boundary condition; large data;
D O I
暂无
中图分类号
学科分类号
摘要
The paper examines steady Navier–Stokes equations in a two-dimensional infinite pipe with slip boundary conditions. At both inlet and outlet, the velocity of flow is assumed to be constant. The main results show the existence of weak and regular solutions with no restrictions of smallness of the flux vector, also simply connectedness of the domain is not required.
引用
收藏
页码:1 / 15
页数:14
相关论文
共 50 条
  • [1] On Navier-Stokes equations with slip boundary conditions in an infinite pipe
    Mucha, PB
    ACTA APPLICANDAE MATHEMATICAE, 2003, 76 (01) : 1 - 15
  • [2] Navier-Stokes equations with slip boundary conditions
    Guo, Ben-Yu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (05) : 607 - 626
  • [3] Slip Boundary Conditions for the Compressible Navier–Stokes Equations
    Kazuo Aoki
    Céline Baranger
    Masanari Hattori
    Shingo Kosuge
    Giorgio Martalò
    Julien Mathiaud
    Luc Mieussens
    Journal of Statistical Physics, 2017, 169 : 744 - 781
  • [4] Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions
    Dragoş Iftimie
    Franck Sueur
    Archive for Rational Mechanics and Analysis, 2011, 199 : 145 - 175
  • [5] Slip Boundary Conditions for the Compressible Navier-Stokes Equations
    Aoki, Kazuo
    Baranger, Celine
    Hattori, Masanari
    Kosuge, Shingo
    Martalo, Giorgio
    Mathiaud, Julien
    Mieussens, Luc
    JOURNAL OF STATISTICAL PHYSICS, 2017, 169 (04) : 744 - 781
  • [6] Spectral Method for Navier–Stokes Equations with Slip Boundary Conditions
    Ben-yu Guo
    Yu-jian Jiao
    Journal of Scientific Computing, 2014, 58 : 249 - 274
  • [7] Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions
    Iftimie, Dragos
    Sueur, Franck
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (01) : 145 - 175
  • [8] Characterization of smooth solutions to the Navier-Stokes equations in a pipe with two types of slip boundary conditions
    Li, Zijin
    Pan, Xinghong
    Yang, Jiaqi
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (03)
  • [9] The compressible Navier–Stokes equations with slip boundary conditions of friction type
    Šárka Nečasová
    Justyna Ogorzaly
    Jan Scherz
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [10] Spectral Method for Navier-Stokes Equations with Slip Boundary Conditions
    Guo, Ben-yu
    Jiao, Yu-jian
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (01) : 249 - 274