Minimal Stabilization for Discontinuous Galerkin Finite Element Methods for Hyperbolic Problems

被引:0
作者
E. Burman
B. Stamm
机构
[1] Swiss Institute of Technology,Institute of Analysis and Scientific Computing
来源
Journal of Scientific Computing | 2007年 / 33卷
关键词
Discontinuous Galerkin ; -FEM; Advection-reaction equation; Local mass conservation; Interior penalty;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a discontinuous Galerkin finite element method for the advection–reaction equation in two space–dimensions. For polynomial approximation spaces of degree greater than or equal to two on triangles we propose a method where stability is obtained by a penalization of only the upper portion of the polynomial spectrum of the jump of the solution over element edges. We prove stability in the standard h-weighted graphnorm and obtain optimal order error estimates with respect to mesh-size.
引用
收藏
页码:183 / 208
页数:25
相关论文
共 26 条
[1]  
Brezzi F.(2001)A minimal stabilisation procedure for mixed finite element methods Numer. Math. 89 457-491
[2]  
Fortin M.(2004)Discontinuous Galerkin methods for first-order hyperbolic problems Math. Models Methods Appl. Sci. 14 1893-1903
[3]  
Brezzi F.(2006)Stabilization mechanisms in discontinuous Galerkin finite element methods Comput. Methods Appl. Mech. Eng. 195 3293-3310
[4]  
Marini L.D.(2005)A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty SIAM J. Numer. Anal. 43 2012-2033
[5]  
Süli E.(2007)Continuous interior penalty Math. Comput. 76 1119-1140
[6]  
Brezzi F.(2004)-finite element methods for advection and advection-diffusion equations Comput. Methods Appl. Mech. Eng. 193 1437-1453
[7]  
Cockburn B.(2001)Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems J. Comput. Appl. Math. 128 187-204
[8]  
Marini L.D.(2001)Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws J. Sci. Comput. 16 173-261
[9]  
Süli E.(1991)Runge-Kutta discontinuous Galerkin methods for convection-dominated problems J. Sci. Comput. 6 345-390
[10]  
Burman E.(2006)Spectral methods on triangles and other domains SIAM J. Numer. Anal. 44 753-778