Global Existence of Non-Cutoff Boltzmann Equation in Weighted Sobolev Space

被引:0
作者
Dingqun Deng
机构
[1] Tsinghua University,Beijing Institute of Mathematical Sciences and Applications and Yau Mathematical Science Center
来源
Journal of Statistical Physics | 2022年 / 188卷
关键词
Global existence; Strongly continuous semigroup; Pseudo-differential calculus; Boltzmann equation without angular cutoff; Regularizing effect; Primary 35Q20; Secondary 76P05; 82C40;
D O I
暂无
中图分类号
学科分类号
摘要
This article presents a new approach of semigroup analysis and pseudo-differential calculus for deriving the regularizing estimate on non-cutoff linearized Boltzmann equation. We are able to obtain regularizing estimate of semigroup etB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{tB}$$\end{document} that is continuous from weighted Sobolev space H(a-1/2)Hxm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(a^{-1/2})H^m_x$$\end{document} to H(a1/2)Hxm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(a^{1/2})H^m_x$$\end{document} with a sharp large time decay. With these properties, we prove the existence of global-in-time unique solution to the non-cutoff Boltzmann equation for hard potential on the whole space with weak regularity assumption on initial data. We consider the hard potential case since H(a1/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(a^{1/2})$$\end{document} can be embedded in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}. This work develops the application of pseudo-differential calculus, spectrum analysis and semigroup theory to non-cutoff Boltzmann equation.
引用
收藏
相关论文
共 98 条
  • [1] Alexandre R(2000)Entropy dissipation and long-range interactions Arch. Ration. Mech. Anal. 152 327-355
  • [2] Desvillettes L(2011)Global existence and full regularity of the Boltzmann equation without angular cutoff Commun. Math. Phys. 304 513-581
  • [3] Villani C(2011)The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential Anal. Appl. 09 113-134
  • [4] Wennberg B(2011)The Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions Arch. Ration. Mech. Anal. 202 599-661
  • [5] Alexandre R(2012)The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential J. Funct. Anal. 262 915-1010
  • [6] Morimoto Y(2002)On the Boltzmann equation for long-range interactions Commun. Pure Appl. Math. 55 30-70
  • [7] Ukai S(2009)A review of Boltzmann equation with singular kernels Kinet. Relat. Models 2 551-646
  • [8] Xu C-J(2005)Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations I. Non cutoff case and Maxwellian molecules Math. Models Methods Appl. Sci. 15 907-920
  • [9] Yang T(2009)Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations. II Non cutoff case and non Maxwellian molecules Discret. Contin. Dyn. Syst. 24 1-11
  • [10] Alexandre R(2019)Global hypoelliptic and symbolic estimates for the linearized Boltzmann operator without angular cutoff J. Math. Pures Appl. 126 1-71