Dynamics analysis in a non-smooth Lü system with two time scales

被引:0
作者
Miao Peng
机构
[1] Jiangsu University,School of Mathematical Sciences
来源
Pramana | / 96卷
关键词
Non-smooth; two time scales; stability; bifurcation; bursting oscillations; 05.45.-a; 05.45.Pq; 05.45.Xt;
D O I
暂无
中图分类号
学科分类号
摘要
To explore the bursting behaviours in a dynamic system with non-smooth factor, this paper takes Lü system as an example, introduces a non-smooth term and a periodic external excitation, ensures that there exists an order gap between the natural frequency and the exited frequency, then a non-smooth dynamic system with two time scales is established. Through the stability analysis of the equilibrium point, the conditions of fold bifurcation and Hopf bifurcation are given. The numerical simulations show the bursting oscillations of the system under different parameter values and the dynamic behaviours of the trajectory at the non-smooth interface. In addition, combining with numerical calculation and related bifurcation theory, the bifurcation types of the system at the interface are determined. Finally, the mechanism of oscillations is revealed by the superposition of bifurcation curves and transformed phase portraits.
引用
收藏
相关论文
共 87 条
[1]  
Li HN(2002)undefined ASME PVP 2 445-undefined
[2]  
Xiao SY(2017)undefined Eur. Phys. J. Plus 6 132-undefined
[3]  
Wang SY(2016)undefined J. Comput. Neurosci. 3 41-undefined
[4]  
Hou JY(2017)undefined J. Exp. Biol. 7 220-undefined
[5]  
Li XH(2017)undefined Appl. Clay Sci. 141 36-undefined
[6]  
Zuo DW(2020)undefined Int. J. Robust Nonlinear Control 30 14-undefined
[7]  
Li YN(2020)undefined Pramana - J. Phys. 1 94-undefined
[8]  
Wang Y(2021)undefined Chin. J. Theor. Appl. Mech. 53 3-undefined
[9]  
Rubin JE(1952)undefined The J. Physiol. 4 117-undefined
[10]  
Blitz DM(2007)undefined Nonlinear Dyn. 4 50-undefined