Localization in Infinite Billiards: A Comparison Between Quantum and Classical Ergodicity

被引:0
作者
Sandro Graffi
Marco Lenci
机构
[1] Università di Bologna,Dipartimento di Matematica
[2] Stevens Institute of Technology,Department of Mathematical Sciences
来源
Journal of Statistical Physics | 2004年 / 116卷
关键词
ergodicity; quantum ergodicity; quantum chaos; localization; non-compact billiards; cusps;
D O I
暂无
中图分类号
学科分类号
摘要
Consider the non-compact billiard in the first quandrant bounded by the positive x-semiaxis, the positive y-semiaxis and the graph of f(x)=(x+1)−α, α∈(1,2]. Although the Schnirelman Theorem holds, the quantum average of the position xis finite on any eigenstate, while classical ergodicity entails that the classical time average of xis unbounded.
引用
收藏
页码:821 / 830
页数:9
相关论文
共 34 条
[1]  
Bourgain J.(2003)Entropy of quantum limits Comm. Math. Phys. 233 153-171
[2]  
Lindenstrauss E.(1985)Ergodicité et fonctions propres du laplacien Comm. Math. Phys. 102 497-502
[3]  
Colin de Verdière Y.(1985)Trace properties of the Dirichlet Laplacian Math. Zeit. 188 245-251
[4]  
Davies E. B.(1992)Spectral properties of the Neumann Laplacian of horns Geom. Funct. Anal. 2 105-117
[5]  
Davies E. B.(1995)Stochastic properties of the quantum toral automorphisms at the classical limit Comm. Math. Phys. 167 471-507
[6]  
Simon B.(1987)Ergodicité et limite semi-classique Comm. Math. Phys. 109 313-326
[7]  
Degli Esposti M.(1996)Escape orbits for non-compact flat billiards Chaos 6 428-431
[8]  
Graffi S.(2002)Semidispersing billiards with an infinite cusp. I Comm. Math. Phys. 230 133-180
[9]  
Isola S.(2003)Semidispersing billiards with an infinite cusp. II Chaos 13 105-111
[10]  
Helffer B.(2001)On quantum unique ergodicity for г\ℍх ℍ Internat. Math. Res. Notices 17 913-933