A Rigorous Proof of the Waterloo Algorithm for the Discrete Logarithm Problem

被引:0
作者
Michael Drmota
Daniel Panario
机构
[1] Institut für Geometrie,
[2] School of Mathematics and Statistics,undefined
[3] Carleton University,undefined
来源
Designs, Codes and Cryptography | 2002年 / 26卷
关键词
discrete logarithm problem; finite fields; smooth polynomials;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we are concerned with the Waterloo variant of the index calculus method for the discrete logarithm problem in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{F}_{2^n } $$ \end{document}. We provide a rigorous proof for the heuristic arguments for the running time of the Waterloo algorithm. This implies in studying the behavior of pairs of coprime smooth polynomials over finite fields. Our proof involves a double saddle point method, and it is in nature similar to the one of Odlyzko for the rigorous analysis of the basic index calculus.
引用
收藏
页码:229 / 241
页数:12
相关论文
共 21 条
[1]  
Blake I. F.(1984)Computing discrete logarithms in finite fields of characteristic two SIAM J. Alg. Disc. Meth. 5 276-285
[2]  
Fuji-Hara R.(1984)How to generate cryptographically strong sequences of pseudorandom bits SIAM J. Comput. 13 850-864
[3]  
Mullin R. C.(1984)Fast evaluation of logarithms in fields of characteristic two IEEE Trans. Info. Theory 30 587-594
[4]  
Vanstone S. A.(1998)A pentagonal number sieve Journal of Combinatorial Theory, Series A 82 186-192
[5]  
Blum M.(1976)New directions in cryptography IEEE Trans. Inform. Theory 22 644-654
[6]  
Micali S.(1985)A public key cryptosystem and a signature scheme based on discrete logarithms IEEE Trans. Info. Theory 31 469-472
[7]  
Coppersmith D.(2001)The complete analysis of a polynomial factorization algorithm over finite fields J. of Algorithms 40 37-81
[8]  
Corteel S.(2001)The index calculus method using non-smooth polynomials Mathematics of Computation 70 1253-1264
[9]  
Savage C.(1992)Semigroup elements free of large prime factors New trends in Probability and Statistics VSP/TEV 135-153
[10]  
Wilf H.(2000)On an involution concerning pairs of polynomials over F Journal of Combinatorial Theory, Series A 90 216-220