On harmonic maps from stochastically complete manifolds

被引:0
作者
Alireza Ranjbar-Motlagh
机构
[1] Sharif University of Technology,Department of Mathematical Sciences
来源
Archiv der Mathematik | 2009年 / 92卷
关键词
Primary 53C43, 58E20; Secondary 53C42, 60H30; Harmonic maps; stochastically complete manifolds; minimal submanifolds; generalized maximum principle; Laplace-Beltrami operator; heat kernel;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this article is to generalize a theorem about the size of minimal submanifolds in Euclidean spaces. In fact, we state and prove a non-existence theorem about harmonic maps from a stochastically complete manifold into a cone type domain. The proof is based on a generalized version of the maximum principle applied to the Lapalace-Beltrami operator on Riemannian manifolds.
引用
收藏
页码:637 / 644
页数:7
相关论文
empty
未找到相关数据