Blind source separation for the analysis sparse model

被引:1
作者
Shuang Ma
Hongjuan Zhang
Zhuoyun Miao
机构
[1] Shanghai University,Department of Mathematics
来源
Neural Computing and Applications | 2021年 / 33卷
关键词
Analysis sparse model; Analysis dictionary learning; Blind source separation;
D O I
暂无
中图分类号
学科分类号
摘要
Sparsity of the signal has been shown to be very useful for blind source separation (BSS) problem which aims at recovering unknown sources from their mixtures. In this paper, we propose a novel algorithm based on the analysis sparse constraint of the source over an adaptive analysis dictionary to address BSS problem. This method has an alternating scheme by keeping all but one unknown fixed at a time so that the dictionary, the source, and the mixing matrix are estimated alternatively. In order to make better use of the sparsity constrain, l0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{0}$$\end{document}-norm is utilized directly for a more exact solution instead of its other relaxation, such as lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l_{\mathrm{p}}$$\end{document}-norm (0<p≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<p\le 1$$\end{document}). Numerical experiments show that the proposed method indeed improves the separation performance.
引用
收藏
页码:8543 / 8553
页数:10
相关论文
共 102 条
  • [1] Hyvärinen A(2000)Independent component analysis: algorithms and applications Neural Netw 13 411-430
  • [2] Oja E(1995)An information-maximization approach to blind separation and blind deconvolution Neural Comput 7 1129-1159
  • [3] Bell A(2017)Caveats with stochastic gradient and maximum likelihood based ica for eeg Lecture Note Computer Sci 10169 279-289
  • [4] Sejnowski T(2007)A relative trust-region algorithm for independent component analysis Neurocomputing 70 1502-1510
  • [5] Montoya-Martínez J(2003)A limited memory algorithm for bound constrained optimization SIAM J Sci Comput 16 1190-1208
  • [6] Cardoso JF(2018)Faster independent component analysis by preconditioning with hessian approximations IEEE Trans Signal Process 66 4040-4049
  • [7] Gramfort A(1999)Learning the parts of objects by non-negative matrix factorization Nature 401 788-791
  • [8] Choi H(2008)Svd based initialization: a head start for nonnegative matrix factorization Pattern Recognit 41 1350-1362
  • [9] Choi S(2018)Sparse sample self-representation for subspace clustering Neural Comput Appl 29 43-49
  • [10] Byrd R(2017)Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers IEEE Trans Big Data 3 405-414