Classical inequalities for (p, q)-calculus on finite intervals

被引:0
作者
Pankaj Jain
Rohit Manglik
机构
[1] South Asian University,Department of Mathematics
来源
Boletín de la Sociedad Matemática Mexicana | 2021年 / 27卷
关键词
(;  ; )-integral inequalities; Hölder’s inequality; Minkowski’s inequality; Grüss-integral inequality; Andreief’s identity; Korkine identity; 26D10; 26D15; 34A08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, certain classical inequalities, namely, trapezoidal inequality (first as well as second order), generalized weighted Hölder’s inequality, Minkowski’s inequality and Grüss type inequalities have been investigated in the framework of (p, q)-calculus. These inequalities extend the corresponding known inequalities in q-calculus. Moreover, in the case of trapezoidal inequality, we improve upon the constant as well. To prove (p, q)-Grüss inequalities, we first derive (p, q)-Andreief’s identity which, in particular, contains (p, q)-Korkine identity.
引用
收藏
相关论文
共 57 条
[1]  
Araci S(2016)A certain J. Inequal. Appl. 301 8-781
[2]  
Duran U(2016)-derivative Operator and associated divided differences J. Math. Inequal. 10 761-36
[3]  
Acikgoz M(1994)Some new Hardy-type inequalities in Integral Transforms Spec. Funct. 2 15-70
[4]  
Srivastava HM(1993)-analysis Ann. Phys. 221 53-300
[5]  
Baiarystanov AO(2004)P, Q-differentiation, P, Q-integration and P, Q-hypergeometric series functions related to quantum groups Comput. Math. Appl. 47 281-203
[6]  
Persson L-E(1910)Quantum algebras and q-special functions Q. J. Pure Appl. Math. 41 193-1620
[7]  
Shaimardan S(2020)Integral inequalities in J. Pseudo-Differ. Oper. Appl. 11 1595-1310
[8]  
Temirkhanova A(2020)-calculus Math. Inequal. Appl. 23 1279-157
[9]  
Burban IM(2012)On a J. Math. Phys. Anal. Geom. 8 144-252
[10]  
Klimyk AU(1994)-definite integral Algebras Groups Geom. 11 229-764