A note on the electrochemical nature of the thermoelectric power

被引:0
作者
Y. Apertet
H. Ouerdane
C. Goupil
Ph. Lecoeur
机构
[1] Lycée Jacques Prévert,UFR Langues Vivantes Etrangères
[2] Russian Quantum Center,Laboratoire Interdisciplinaire des Energies de Demain (LIED)
[3] Université de Caen Normandie,Institut d’Electronique Fondamentale
[4] UMR 8236 Université Paris Diderot,undefined
[5] CNRS,undefined
[6] Université Paris-Sud,undefined
[7] CNRS,undefined
[8] UMR 8622,undefined
来源
The European Physical Journal Plus | / 131卷
关键词
Conduction Band; Fermi Level; Fermi Energy; Seebeck Coefficient; Thermoelectric Power;
D O I
暂无
中图分类号
学科分类号
摘要
While thermoelectric transport theory is well established and widely applied, it is not always clear in the literature whether the Seebeck coefficient, which is a measure of the strength of the mutual interaction between electric charge transport and heat transport, is to be related to the gradient of the system’s chemical potential or to the gradient of its electrochemical potential. The present article aims to clarify the thermodynamic definition of the thermoelectric coupling. First, we recall how the Seebeck coefficient is experimentally determined. We then turn to the analysis of the relationship between the thermoelectric power and the relevant potentials in the thermoelectric system: As the definitions of the chemical and electrochemical potentials are clarified, we show that, with a proper consideration of each potential, one may derive the Seebeck coefficient of a non-degenerate semiconductor without the need to introduce a contact potential as seen sometimes in the literature. Furthermore, we demonstrate that the phenomenological expression of the electrical current resulting from thermoelectric effects may be directly obtained from the drift-diffusion equation.
引用
收藏
相关论文
共 50 条
  • [1] Gate-Tuned Thermoelectric Power in Black Phosphorus
    Saito, Yu
    Iizuka, Takahiko
    Koretsune, Takashi
    Arita, Ryotaro
    Shimizu, Sunao
    Iwasa, Yoshihiro
    NANO LETTERS, 2016, 16 (08) : 4819 - 4824
  • [2] Thermoelectric power studies of Ca-Co ferrites
    Ravinder, D
    Kumar, GR
    Venudhar, YC
    JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 368 (1-2) : 38 - 43
  • [3] Lead telluride as a thermoelectric material for thermoelectric power generation
    Dughaish, ZH
    PHYSICA B-CONDENSED MATTER, 2002, 322 (1-2) : 205 - 223
  • [4] Thermoelectric Power Investigation on SmS
    Imura, Keiichiro
    Kanematsu, Shinkichi
    Deguchi, Kazuhiko
    Suzuki, Hiroyuki S.
    Matsubayashi, Kazuyuki
    Sato, Noriaki K.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80
  • [5] Thermoelectric power of stabilized zirconia
    Ahlgren, EO
    Poulsen, FW
    SOLID STATE IONICS, 1995, 82 (3-4) : 193 - 201
  • [6] Thermoelectric power studies of magnesium and aluminium substituted lithium ferrites
    Ashok, C
    Ravinder, D
    JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 394 (1-2) : 5 - 7
  • [7] ANALYSIS OF THERMOELECTRIC-POWER GENERATION USING THERMOELECTRIC ELEMENT
    OGAWA, Y
    WATANABE, H
    SAKAI, M
    TUNOU, K
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 1994, 77 (05): : 93 - 105
  • [8] Sensitivity of the thermoelectric power of metallic materials to an elastic uniaxial strain
    Kleber, Xavier
    Roux, Philippe
    Morin, Michel
    PHILOSOPHICAL MAGAZINE LETTERS, 2009, 89 (09) : 565 - 572
  • [9] Output Power Characterization of Flexible Thermoelectric Power Generators
    Kansaku, Daiki
    Kawase, Nobuhiro
    Fujiwara, Naoki
    Khan, Faizan
    Kristy, Arockiyasamy Periyanayaga
    Nisha, Kuruvankatil Dharmajan
    Yamakawa, Toshitaka
    Ikeda, Kazushi
    Hayakawa, Yasuhiro
    Murakami, Kenji
    Shimomura, Masaru
    Ikeda, Hiroya
    IEICE TRANSACTIONS ON ELECTRONICS, 2022, E105C (10) : 639 - 642
  • [10] Thermoelectric power of proton conducting oxides
    Tsidilkovski, VI
    Gorelov, VP
    Balakireva, VB
    SOLID STATE IONICS, 2003, 162 : 55 - 61