Entanglement entropy in de Sitter space

被引:0
作者
Juan Maldacena
Guilherme L. Pimentel
机构
[1] Institute for Advanced Study,School of Natural Sciences
[2] Princeton University,Joseph Henry Laboratories
来源
Journal of High Energy Physics | / 2013卷
关键词
Classical Theories of Gravity; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We compute the entanglement entropy for some quantum field theories on de Sitter space. We consider a superhorizon size spherical surface that divides the spatial slice into two regions, with the field theory in the standard vacuum state. First, we study a free massive scalar field. Then, we consider a strongly coupled field theory with a gravity dual, computing the entanglement using the gravity solution. In even dimensions, the interesting piece of the entanglement entropy is proportional to the number of e-foldings that elapsed since the spherical region was inside the horizon. In odd dimensions it is contained in a certain finite piece. In both cases the entanglement captures the long range correlations produced by the expansion.
引用
收藏
相关论文
共 113 条
  • [1] Amico L(2008)Entanglement in many-body systems Rev. Mod. Phys. 80 517-undefined
  • [2] Fazio R(2009)Quantum entanglement Rev. Mod. Phys. 81 865-undefined
  • [3] Osterloh A(1986)A Quantum Source of Entropy for Black Holes Phys. Rev. D 34 373-undefined
  • [4] Vedral V(1993)Entropy and area Phys. Rev. Lett. 71 666-undefined
  • [5] Horodecki R(2009)Entanglement entropy in free quantum field theory J. Phys. A 42 504007-undefined
  • [6] Horodecki P(1978)Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting Proc. Roy. Soc. Lond. A 360 117-undefined
  • [7] Horodecki M(1968)Quantum theory of scalar fields in de Sitter space-time Ann. I. H. Poincare A 9 109-undefined
  • [8] Horodecki K(1983)Wave Function of the Universe Phys. Rev. D 28 2960-undefined
  • [9] Bombelli L(1994)On geometric entropy Phys. Lett. B 333 55-undefined
  • [10] Koul RK(2006)Holographic derivation of entanglement entropy from AdS/CFT Phys. Rev. Lett. 96 181602-undefined