Unconditionally Convergent Rational Interpolation Splines

被引:0
作者
A.-R. K. Ramazanov
V. G. Magomedova
机构
[1] Daghestan State University,Daghestan Research Center
[2] Russian Academy of Sciences,undefined
来源
Mathematical Notes | 2018年 / 103卷
关键词
rational spline; interpolation spline; convergence of splines;
D O I
暂无
中图分类号
学科分类号
摘要
Given a continuous function on a closed interval, a sequence of rational interpolation splines is constructed which converges uniformly on this closed interval to the given function for any sequence of grids with step width tending to zero. The derivatives possess this unconditional convergence property as well. Estimates of the rate of convergence are given.
引用
收藏
页码:635 / 644
页数:9
相关论文
共 17 条
[1]  
Nord S.(1967)Approximation properties of the spline fit Nordisk Tidskr. Informations-Behandling (BIT) 7 132-144
[2]  
Subbotin Y. N.(1997)Variations on a spline theme Fundam. Prikl.Mat. 3 1043-1058
[3]  
Privalov Al. A.(1979)Convergence of cubic interpolation splines to a continuous function Mat. Zametki 25 681-700
[4]  
Schaback R.(1973)Spezielle rationale Splinefunktionen J. Approx. Theory 7 281-292
[5]  
Duan Q.(2000)Weighted rational cubic spline interpolation and its application J. Comput. Appl.Math. 117 121-135
[6]  
Djidjeli K.(1999)Rational spline interpolation to monotonic data Proc. Estonian Acad. Sci. Phys. Math. 48 22-30
[7]  
Price W. G.(2011)Error analysis of a rational interpolation spline Int. J.Math. Anal. (Ruse) 5 1287-1294
[8]  
Twizell E. H.(2011)Shape preserving rational cubic spline for positive and convex data Egyptian Inform. J. 12 231-236
[9]  
Oja P.(2015)Shape preserving C2 rational cubic spline interpolation Amer. Sci. Res. J. Engrg. Tech. Sci. (ASRJETS) 12 110-122
[10]  
Tian M.(undefined)undefined undefined undefined undefined-undefined