A minimum entropy principle of high order schemes for gas dynamics equations

被引:0
作者
Xiangxiong Zhang
Chi-Wang Shu
机构
[1] Brown University,Division of Applied Mathematics
[2] MIT,Department of Mathematics
来源
Numerische Mathematik | 2012年 / 121卷
关键词
65M60; 76N15;
D O I
暂无
中图分类号
学科分类号
摘要
The entropy solutions of the compressible Euler equations satisfy a minimum principle for the specific entropy (Tadmor in Appl Numer Math 2:211–219, 1986). First order schemes such as Godunov-type and Lax-Friedrichs schemes and the second order kinetic schemes (Khobalatte and Perthame in Math Comput 62:119–131, 1994) also satisfy a discrete minimum entropy principle. In this paper, we show an extension of the positivity-preserving high order schemes for the compressible Euler equations in Zhang and Shu (J Comput Phys 229:8918–8934, 2010) and Zhang et al. (J Scientific Comput, in press), to enforce the minimum entropy principle for high order finite volume and discontinuous Galerkin (DG) schemes.
引用
收藏
页码:545 / 563
页数:18
相关论文
共 34 条
  • [1] Carpenter M.H.(1995)The theoretical accuracy of Runge–Kutta time discretizations for the initial boundary value problem: a study of the boundary error SIAM J. Scientific Comput. 16 1241-1252
  • [2] Gottlieb D.(1989)TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems J. Comput. Phys. 84 90-113
  • [3] Abarbanel S.(2009)High order strong stability preserving time discretizations J. Scientific Comput. 38 251-289
  • [4] Don W.-S.(2001)Strong stability preserving high order time discretization methods SIAM Rev. 43 89-112
  • [5] Cockburn B.(1983)On the symmetric form of systems of conservation laws with entropy J. Comput. Phys. 49 151-164
  • [6] Lin S.-Y.(1994)Maximum principle on the entropy and second-order kinetic schemes Math. Comput. 62 119-131
  • [7] Shu C.-W.(1996)On positivity preserving finite volume schemes for Euler equations Numerische Mathematik 73 119-130
  • [8] Gottlieb S.(1988)Total-variation-diminishing time discretizations SIAM J. Scientific Stat. Comput. 9 1073-1084
  • [9] Ketcheson D.I.(1988)Efficient implementation of essentially non-oscillatory shock-capturing schemes J. Comput. Phys. 77 439-471
  • [10] Shu C.-W.(1989)Efficient implementation of essentially non-oscillatory shock-capturing schemes, II J. Comput. Phys. 83 32-78