Existence of Ground State Solutions for Generalized Quasilinear Schrödinger Equations with Asymptotically Periodic Potential

被引:0
作者
Yan-Fang Xue
Li-Ju Yu
Jian-Xin Han
机构
[1] Xin-Yang Normal University,School of Mathematics and Statistics
[2] Jiaxing University,School of Data Science
来源
Qualitative Theory of Dynamical Systems | 2022年 / 21卷
关键词
Quasilinear Schrödinger equation; Ground state solutions; Asymptotically periodic; Nehari manifold;
D O I
暂无
中图分类号
学科分类号
摘要
This article is concerned with the existence of positive ground state solutions for an asymptotically periodic quasilinear Schrödinger equation. By using a Nehari-type constraint, we get the existence results which improve the ones in Shi and Chen (Comput Math Appl 71:849–858, 2016). Moreover, we give an application of our results, which extends the results in Li (Commun Pure Appl Anal 14:1803–1816, 2015).
引用
收藏
相关论文
共 51 条
[1]  
Alves CO(2015)Soliton solutions for a class of quasilinear Schrödinger equations with a parameter J. Differ. Equ. 259 318-343
[2]  
Wang YJ(2017)Generalized quasilinear Schrödinger equations with critical growth Appl. Math. Lett. 65 106-112
[3]  
Shen YT(2018)Existence of positive solutions for a quasilinear Schrödinger equation Nonlinear Anal. R.W.A. 44 118-127
[4]  
Cheng YK(2004)Solutions for a quasilinear Schrödinger equation: a dual approach Nonlinear Anal. T.M.A. 56 213-226
[5]  
Shen YT(2016)Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations J. Differ. Equ. 260 1228-1262
[6]  
Chu CM(2016)Soliton solutions for a quasilinear Schrödinger equation with critical exponent Commun. Pure Appl. Anal. 15 1309-1333
[7]  
Liu HD(2015)Positive solution for quasilinear Schrödinger equations with a parameter Commun. Pure Appl. Anal. 14 1803-1816
[8]  
Colin M(2020)Positive solutions for quasilinear Schrödinger equations with superlinear term Complex Var. Ell. Equ. 65 1-20
[9]  
Jeanjean L(2017)Ground state solutions and geometrically distinct solutions for generalized quasilinear Schrödinger equation Math. Methods Appl. Sci. 40 2165-2176
[10]  
Deng YB(2016)Positive solution for a quasilinear elliptic equation involving critical or supercritical exponent J. Math. Phys. 57 041506-3444