Some Upper Bounds for the Net Laplacian Index of a Signed Graph

被引:0
作者
Farzaneh Ramezani
Zoran Stanić
机构
[1] K.N. Toosi University of Technology,Faculty of Mathematics
[2] University of Belgrade,Faculty of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2022年 / 48卷
关键词
Signed graph; Net Laplacian matrix; Largest eigenvalue; Upper bound; 05C22; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
The net Laplacian matrix NG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}$$\end{document} of a signed graph G˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{G}$$\end{document} is defined as NG˙=DG˙±-AG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}=D_{\dot{G}}^{\pm }-A_{\dot{G}}$$\end{document}, where DG˙±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\dot{G}}^{\pm }$$\end{document} and AG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\dot{G}}$$\end{document} denote the diagonal matrix of net-degrees and the adjacency matrix of G˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{G}$$\end{document}, respectively. In this study, we give two upper bounds for the largest eigenvalue of NG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}$$\end{document}, both expressed in terms related to vertex degrees. We also discuss their quality, provide certain comparisons and consider some particular cases.
引用
收藏
页码:243 / 250
页数:7
相关论文
共 50 条
[41]   Sharp upper bounds of the spectral radius of a graph [J].
Guo, Ji-Ming ;
Wang, Zhi-Wen ;
Li, Xin .
DISCRETE MATHEMATICS, 2019, 342 (09) :2559-2563
[42]   Algorithmic upper bounds for graph geodetic number [J].
Anaqreh, Ahmad T. ;
G-Toth, Boglarka ;
Vinko, Tamas .
CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, 2022, 30 (04) :1221-1237
[43]   SHARP UPPER BOUNDS ON THE SPECTRAL RADIUS OF THE LAPLACIAN MATRIX OF GRAPHS [J].
Das, K. Ch. .
ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2005, 74 (02) :185-198
[44]   Note on an upper bound for sum of the Laplacian eigenvalues of a graph [J].
Chen, Xiaodan ;
Li, Jingjian ;
Fan, Yingmei .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 541 :258-265
[45]   The characterization of the upper bounds on the largest Laplacian eigenvalue of weighted graphs [J].
Li, Ping .
ARS COMBINATORIA, 2020, 153 :99-107
[46]   Some criteria for a signed graph to have full rank [J].
Akbari, S. ;
Ghafari, A. ;
Kazemian, K. ;
Nahvi, M. .
DISCRETE MATHEMATICS, 2020, 343 (08)
[47]   A remark on Normalized Laplacian eigenvalues of signed graph (vol 17, pg 75, 2021) [J].
Prashanth, B. ;
Naik, K. Nagendra ;
Salestina, R. M. .
JOURNAL OF APPLIED MATHEMATICS STATISTICS AND INFORMATICS, 2022, 18 (01) :109-124
[48]   Upper Bounds on the (Signless Laplacian) Spectral Radius of Irregular Weighted Graphs [J].
Shuiqun Xie ;
Xiaodan Chen ;
Xiuyu Li ;
Xiaoqian Liu .
Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 :2063-2080
[49]   Sharp upper bounds for the adjacency and the signless Laplacian spectral radius of graphs [J].
Xian-zhang Wu ;
Jian-ping Liu .
Applied Mathematics-A Journal of Chinese Universities, 2019, 34 :100-112
[50]   Sharp upper bounds for the adjacency and the signless Laplacian spectral radius of graphs [J].
Wu Xian-zhang ;
Liu Jian-ping .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2019, 34 (01) :100-112