Some Upper Bounds for the Net Laplacian Index of a Signed Graph

被引:0
作者
Farzaneh Ramezani
Zoran Stanić
机构
[1] K.N. Toosi University of Technology,Faculty of Mathematics
[2] University of Belgrade,Faculty of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2022年 / 48卷
关键词
Signed graph; Net Laplacian matrix; Largest eigenvalue; Upper bound; 05C22; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
The net Laplacian matrix NG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}$$\end{document} of a signed graph G˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{G}$$\end{document} is defined as NG˙=DG˙±-AG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}=D_{\dot{G}}^{\pm }-A_{\dot{G}}$$\end{document}, where DG˙±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\dot{G}}^{\pm }$$\end{document} and AG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\dot{G}}$$\end{document} denote the diagonal matrix of net-degrees and the adjacency matrix of G˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{G}$$\end{document}, respectively. In this study, we give two upper bounds for the largest eigenvalue of NG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}$$\end{document}, both expressed in terms related to vertex degrees. We also discuss their quality, provide certain comparisons and consider some particular cases.
引用
收藏
页码:243 / 250
页数:7
相关论文
共 50 条
[31]   A New Upper Bound for Laplacian Graph Eigenvalues [J].
Hu, Shengbiao .
INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE, 2008, 1060 :298-301
[32]   Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem [J].
Hassannezhad, Asma .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (12) :3419-3436
[33]   A note on the upper bounds for the Laplacian spectral radius of graphs [J].
Guo, Ji-Ming ;
Li, Jianxi ;
Shiu, Wai Chee .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (06) :1657-1661
[34]   Some results on the Laplacian spread of a graph [J].
Chen, Xiaodan ;
Das, Kinkar Ch. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 505 :245-260
[35]   A graph modelling to measure the frustration index in signed networks [J].
Kizhakekunnel, Germina Augusthy .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48) :605-614
[36]   A graph modelling to measure the frustration index in signed networks [J].
Kizhakekunnel, Germina Augusthy .
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, (48) :605-614
[37]   Net Laplacian eigenvalues of certain corona-like products of signed graphs [J].
Shamsher, Tahir ;
Pirzada, S. ;
Stanic, Zoran .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03)
[38]   Bounds for the matching number and cyclomatic number of a signed graph in terms of rank [J].
He, Shengjie ;
Hao, Rong-Xia ;
Lai, Hong-Jian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 572 :273-291
[39]   UPPER BOUNDS ON THE HARMONIC STATUS INDEX [J].
Azari, Mahdieh .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (03) :895-910
[40]   Algorithmic upper bounds for graph geodetic number [J].
Ahmad T. Anaqreh ;
Boglárka G.-Tóth ;
Tamás Vinkó .
Central European Journal of Operations Research, 2022, 30 :1221-1237