Some Upper Bounds for the Net Laplacian Index of a Signed Graph

被引:0
作者
Farzaneh Ramezani
Zoran Stanić
机构
[1] K.N. Toosi University of Technology,Faculty of Mathematics
[2] University of Belgrade,Faculty of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2022年 / 48卷
关键词
Signed graph; Net Laplacian matrix; Largest eigenvalue; Upper bound; 05C22; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
The net Laplacian matrix NG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}$$\end{document} of a signed graph G˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{G}$$\end{document} is defined as NG˙=DG˙±-AG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}=D_{\dot{G}}^{\pm }-A_{\dot{G}}$$\end{document}, where DG˙±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\dot{G}}^{\pm }$$\end{document} and AG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\dot{G}}$$\end{document} denote the diagonal matrix of net-degrees and the adjacency matrix of G˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{G}$$\end{document}, respectively. In this study, we give two upper bounds for the largest eigenvalue of NG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}$$\end{document}, both expressed in terms related to vertex degrees. We also discuss their quality, provide certain comparisons and consider some particular cases.
引用
收藏
页码:243 / 250
页数:7
相关论文
共 50 条
[21]   Upper bounds on the upper signed total domination number of graphs [J].
Shan, Erfang ;
Cheng, T. C. E. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) :1098-1103
[22]   On the Net Distance Matrix of a Signed Block Graph [J].
Hong, Zixuan ;
Hou, Yaoping .
CONTEMPORARY MATHEMATICS, 2023, 4 (01) :167-181
[23]   PERTURBATIONS IN A SIGNED GRAPH AND ITS INDEX [J].
Stanic, Zoran .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (03) :841-852
[24]   AN INCOMPARABLE UPPER BOUND FOR THE LARGEST LAPLACIAN GRAPH EIGENVALUE [J].
Sorgun, Sezer .
ARS COMBINATORIA, 2017, 133 :197-204
[25]   The Network Factor of Equity Pricing: A Signed Graph Laplacian Approach [J].
Uddin, Ajim ;
Tao, Xinyuan ;
Yu, Dantong .
JOURNAL OF FINANCIAL ECONOMETRICS, 2024, 22 (05) :1616-1655
[26]   de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph [J].
Li, JS ;
Pan, YL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 328 (1-3) :153-160
[27]   Upper bounds on vertex distinguishing chromatic index of some Halin graphs [J].
ZHU Jun-qiao 1 BU Yue-hua 2 .
Applied Mathematics:A Journal of Chinese Universities, 2012, (03) :329-334
[28]   Upper bounds on vertex distinguishing chromatic index of some Halin graphs [J].
Jun-qiao Zhu ;
Yue-hua Bu .
Applied Mathematics-A Journal of Chinese Universities, 2012, 27 :329-334
[29]   Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph [J].
Chen, Yanqing ;
Wang, Ligong .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (05) :908-913
[30]   Upper bounds on vertex distinguishing chromatic index of some Halin graphs [J].
Zhu Jun-qiao ;
Bu Yue-hua .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (03) :329-334