Some Upper Bounds for the Net Laplacian Index of a Signed Graph

被引:0
作者
Farzaneh Ramezani
Zoran Stanić
机构
[1] K.N. Toosi University of Technology,Faculty of Mathematics
[2] University of Belgrade,Faculty of Mathematics
来源
Bulletin of the Iranian Mathematical Society | 2022年 / 48卷
关键词
Signed graph; Net Laplacian matrix; Largest eigenvalue; Upper bound; 05C22; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
The net Laplacian matrix NG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}$$\end{document} of a signed graph G˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{G}$$\end{document} is defined as NG˙=DG˙±-AG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}=D_{\dot{G}}^{\pm }-A_{\dot{G}}$$\end{document}, where DG˙±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\dot{G}}^{\pm }$$\end{document} and AG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{\dot{G}}$$\end{document} denote the diagonal matrix of net-degrees and the adjacency matrix of G˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{G}$$\end{document}, respectively. In this study, we give two upper bounds for the largest eigenvalue of NG˙\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\dot{G}}$$\end{document}, both expressed in terms related to vertex degrees. We also discuss their quality, provide certain comparisons and consider some particular cases.
引用
收藏
页码:243 / 250
页数:7
相关论文
共 50 条
[1]   Some Upper Bounds for the Net Laplacian Index of a Signed Graph [J].
Ramezani, Farzaneh ;
Stanic, Zoran .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (01) :243-250
[2]   An upper bound for the Laplacian index of a signed graph [J].
Ramezani, Farzaneh ;
Stanic, Zoran .
DISCRETE MATHEMATICS LETTERS, 2021, 5 :24-28
[3]   SOME PROPERTIES OF THE EIGENVALUES OF THE NET LAPLACIAN MATRIX OF A SIGNED GRAPH [J].
Stanic, Zoran .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) :893-903
[4]   On the spectrum of the net Laplacian matrix of a signed graph [J].
Stanic, Zoran .
BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2020, 63 (02) :205-213
[5]   Upper Bounds for the Laplacian Graph Eigenvalues [J].
Jiong Sheng Li ;
Yong Liang Pan .
Acta Mathematica Sinica, 2004, 20 :803-806
[6]   Upper Bounds for the Laplacian Graph Eigenvalues [J].
Jiong Sheng LI Yong Liang PAN Department of MathematicsUniversity of Science and Technology of ChinaHefei PRChina .
ActaMathematicaSinica(EnglishSeries), 2004, 20 (05) :803-806
[7]   On upper bounds for Laplacian graph eigenvalues [J].
Zhu, Dongmei .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) :2764-2772
[8]   Upper bounds for the Laplacian graph eigenvalues [J].
Li, JS ;
Pan, YL .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) :803-806
[9]   Bounds for the least Laplacian eigenvalue of a signed graph [J].
Hou, YP .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) :955-960
[10]   Bounds for the Least Laplacian Eigenvalue of a Signed Graph [J].
Yao Ping HOU Department of MathematicsHunan Normal UniversityChangsha PRChina .
ActaMathematicaSinica(EnglishSeries), 2005, 21 (04) :955-960