Some Upper Bounds for the Net Laplacian Index of a Signed Graph
被引:0
|
作者:
Farzaneh Ramezani
论文数: 0引用数: 0
h-index: 0
机构:K.N. Toosi University of Technology,Faculty of Mathematics
Farzaneh Ramezani
Zoran Stanić
论文数: 0引用数: 0
h-index: 0
机构:K.N. Toosi University of Technology,Faculty of Mathematics
Zoran Stanić
机构:
[1] K.N. Toosi University of Technology,Faculty of Mathematics
[2] University of Belgrade,Faculty of Mathematics
来源:
Bulletin of the Iranian Mathematical Society
|
2022年
/
48卷
关键词:
Signed graph;
Net Laplacian matrix;
Largest eigenvalue;
Upper bound;
05C22;
05C50;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The net Laplacian matrix NG˙\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N_{\dot{G}}$$\end{document} of a signed graph G˙\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{G}$$\end{document} is defined as NG˙=DG˙±-AG˙\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N_{\dot{G}}=D_{\dot{G}}^{\pm }-A_{\dot{G}}$$\end{document}, where DG˙±\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$D_{\dot{G}}^{\pm }$$\end{document} and AG˙\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$A_{\dot{G}}$$\end{document} denote the diagonal matrix of net-degrees and the adjacency matrix of G˙\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\dot{G}$$\end{document}, respectively. In this study, we give two upper bounds for the largest eigenvalue of NG˙\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$N_{\dot{G}}$$\end{document}, both expressed in terms related to vertex degrees. We also discuss their quality, provide certain comparisons and consider some particular cases.