A code within the genetic code: codon usage regulates co-translational protein folding

被引:0
|
作者
Yi Liu
机构
[1] UT Southwestern Medical Center,Department of Physiology, ND13.214A
关键词
Codon usage; Translation elongation; Co-translational protein folding; Intrinsically disordered protein;
D O I
暂无
中图分类号
学科分类号
摘要
The genetic code is degenerate, and most amino acids are encoded by two to six synonymous codons. Codon usage bias, the preference for certain synonymous codons, is a universal feature of all genomes examined. Synonymous codon mutations were previously thought to be silent; however, a growing body evidence now shows that codon usage regulates protein structure and gene expression through effects on co-translational protein folding, translation efficiency and accuracy, mRNA stability, and transcription. Codon usage regulates the speed of translation elongation, resulting in non-uniform ribosome decoding rates on mRNAs during translation that is adapted to co-translational protein folding process. Biochemical and genetic evidence demonstrate that codon usage plays an important role in regulating protein folding and function in both prokaryotic and eukaryotic organisms. Certain protein structural types are more sensitive than others to the effects of codon usage on protein folding, and predicted intrinsically disordered domains are more prone to misfolding caused by codon usage changes than other domain types. Bioinformatic analyses revealed that gene codon usage correlates with different protein structures in diverse organisms, indicating the existence of a codon usage code for co-translational protein folding. This review focuses on recent literature on the role and mechanism of codon usage in regulating translation kinetics and co-translational protein folding.
引用
收藏
相关论文
共 50 条
  • [31] WATER, PROTEIN FOLDING, AND THE GENETIC-CODE
    WOLFENDEN, RV
    CULLIS, PM
    SOUTHGATE, CCF
    SCIENCE, 1979, 206 (4418) : 575 - 577
  • [32] Circular code identified by the codon usage
    Michel, Christian J.
    BIOSYSTEMS, 2024, 244
  • [33] Modulating co-translational protein folding by rational design and ribosome engineering
    Ahn, Minkoo
    Wlodarski, Tomasz
    Mitropoulou, Alkistis
    Chan, Sammy H. S.
    Sidhu, Haneesh
    Plessa, Elena
    Becker, Thomas A.
    Budisa, Nediljko
    Waudby, Christopher A.
    Beckmann, Roland
    Cassaignau, Anais M. E.
    Cabrita, Lisa D.
    Christodoulou, John
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [34] Co-translational protein folding studies of alpha-1 antitrypsin
    Yu, Conny Wing-Heng
    Chu, Lien
    Wang, Xiaolin
    Waudby, Christopher A.
    Christodoulou, John
    Cabrita, Lisa D.
    PROTEIN SCIENCE, 2015, 24 : 84 - 84
  • [35] Co-translational folding of an alphavirus capsid protein in the cytosol of living cells
    Anthony V. Nicola
    Wei Chen
    Ari Helenius
    Nature Cell Biology, 1999, 1 : 341 - 345
  • [36] A biophysical perspective on co-translational protein translocation, membrane insertion and folding
    von Heijne, G.
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2015, 44 : S43 - S43
  • [37] Modulating co-translational protein folding by rational design and ribosome engineering
    Minkoo Ahn
    Tomasz Włodarski
    Alkistis Mitropoulou
    Sammy H. S. Chan
    Haneesh Sidhu
    Elena Plessa
    Thomas A. Becker
    Nediljko Budisa
    Christopher A. Waudby
    Roland Beckmann
    Anaïs M. E. Cassaignau
    Lisa D. Cabrita
    John Christodoulou
    Nature Communications, 13
  • [38] Transient ribosomal attenuation coordinates protein synthesis and co-translational folding
    Zhang, Gong
    Hubalewska, Magdalena
    Ignatova, Zoya
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2009, 16 (03) : 274 - 280
  • [39] A code within the genetic code
    Bornelov, Susanne
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2024, 25 (06) : 423 - 423
  • [40] Co-translational stabilization drives folding of a multi-domain protein
    Maciuba, Kevin
    Kaiser, Christian
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 285A - 285A