On the Maximum Number of Edges in Chordal Graphs of Bounded Degree and Matching Number

被引:0
作者
Jean R. S. Blair
Pinar Heggernes
Paloma T. Lima
Daniel Lokshtanov
机构
[1] United States Military Academy,Department of Electrical Engineering and Computer Science
[2] Department of Computer Science,Department of Computer Science
[3] University of Bergen,Department of Computer Science
[4] IT University of Copenhagen,undefined
[5] University of California,undefined
来源
Algorithmica | 2022年 / 84卷
关键词
Chordal graphs; Maximum number of edges; Matching number;
D O I
暂无
中图分类号
学科分类号
摘要
We determine the maximum number of edges that a chordal graph G can have if its degree, Δ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta (G)$$\end{document}, and its matching number, ν(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (G)$$\end{document}, are bounded. To do so, we show that for every d,ν∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d,\nu \in \mathbb {N}$$\end{document}, there exists a chordal graph G with Δ(G)<d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta (G)<d$$\end{document} and ν(G)<ν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu (G)<\nu $$\end{document} whose number of edges matches the upper bound, while having a simple structure: G is a disjoint union of cliques and stars.
引用
收藏
页码:3587 / 3602
页数:15
相关论文
共 23 条
[1]  
Balachandran N(2009)Graphs with restricted valency and matching number Discr. Math. 309 4176-4180
[2]  
Khare N(2019)Graph edge coloring: a survey Graphs Comb. 35 33-66
[3]  
Cao Y(1995)Total chromatic number and chromatic index of split graphs J. Comb. Math. Comb. Comput. 17 137-146
[4]  
Chen G(1976)Degrees and matchings J. Comb. Theory Series B 20 128-138
[5]  
Jing G(2017)Maximum number of edges in claw-free graphs whose maximum degree and matching number are bounded Discr. Math. 340 927-934
[6]  
Stiebitz M(2000)Local conditions for edge-colouring J. Comb. Math. Comb. Comput. 32 79-91
[7]  
Toft B(1965)Incidence matrices and interval graphs Pacific J. Math. 15 835-855
[8]  
Chen B(1974)The intersection graphs of subtrees in trees are exactly the chordal graphs J. Comb. Theory Series B 16 47-56
[9]  
Fu H(1981)The NP-completeness of edge-colouring SIAM J. Comput. 10 718-720
[10]  
Ko M(1996)Snarks without small cycles J. Comb. Theory Series B 67 34-47