Entanglement and Density Matrix of a Block of Spins in AKLT Model

被引:0
作者
Ying Xu
Hosho Katsura
Takaaki Hirano
Vladimir E. Korepin
机构
[1] State University of New York at Stony Brook,C.N. Yang Institute for Theoretical Physics
[2] The University of Tokyo,Department of Applied Physics
来源
Journal of Statistical Physics | 2008年 / 133卷
关键词
AKLT; Density matrix; Entanglement; Valence Bond Solid;
D O I
暂无
中图分类号
学科分类号
摘要
We study a 1-dimensional AKLT spin chain, consisting of spins S in the bulk and S/2 at both ends. The unique ground state of this AKLT model is described by the Valence-Bond-Solid (VBS) state. We investigate the density matrix of a contiguous block of bulk spins in this ground state. It is shown that the density matrix is a projector onto a subspace of dimension \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\left(S+1\right)^{2}$\end{document} . This subspace is described by non-zero eigenvalues and corresponding eigenvectors of the density matrix. We prove that for large block the von Neumann entropy coincides with Renyi entropy and is equal to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\ln\left(S+1\right)^{2}$\end{document} .
引用
收藏
页码:347 / 377
页数:30
相关论文
共 167 条
  • [1] Affleck A.(1987)Rigorous results on valence-bond ground states in antiferromagnets Phys. Rev. Lett. 59 799-802
  • [2] Kennedy T.(1988)Valence bond ground states in isotropic quantum antiferromagnets Commun. Math. Phys. 115 477-528
  • [3] Lieb E.H.(2008)Entanglement in many-body systems Rev. Mod. Phys. 80 517-576
  • [4] Tasaki H.(1972)Atomic coherent states in quantum optics Phys. Rev. A 6 2211-2237
  • [5] Affleck A.(2001)Natural thermal and magnetic entanglement in the 1D Heisenberg model Phys. Rev. Lett. 87 017901-534
  • [6] Kennedy T.(1988)Extended Heisenberg models of antiferromagnetism: Analogies to the fractional quantum Hall effect Phys. Rev. Lett. 60 531-255
  • [7] Lieb E.H.(2002)Entanglement properties of the harmonic chain Phys. Rev. A 66 042327-490
  • [8] Tasaki H.(2000)Quantum information and computation Nature 404 247-51
  • [9] Amico L.(2006)Long-distance entanglement in spin systems Phys. Rev. Lett. 96 247206-29
  • [10] Fazio R.(2004)Entanglement and quantum phase transition in low dimensional spin systems New J. Phys. 8 97-468