The wandering subspace property and Shimorin’s condition of shift operator on the weighted Bergman spaces
被引:0
|
作者:
Changhui Wu
论文数: 0引用数: 0
h-index: 0
机构:Qufu Normal University,School of Mathematical Sciences
Changhui Wu
Zhijie Wang
论文数: 0引用数: 0
h-index: 0
机构:Qufu Normal University,School of Mathematical Sciences
Zhijie Wang
Tao Yu
论文数: 0引用数: 0
h-index: 0
机构:Qufu Normal University,School of Mathematical Sciences
Tao Yu
机构:
[1] Qufu Normal University,School of Mathematical Sciences
[2] Jiaxing University,College of Data Science
[3] Dalian University of Technology,School of Mathematical Sciences
来源:
Banach Journal of Mathematical Analysis
|
2022年
/
16卷
关键词:
The weighted Bergman spaces;
Quotient module;
Beurling type theorem;
Wandering subspace property;
47A15;
47A20;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In the present paper, we first study the wandering subspace property of the shift operator on the Ia\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I_{a}$$\end{document} type zero based invariant subspaces of the weighted Bergman spaces La2(dAn)(n=0,2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_{a}^{2}(dA_{n})(n=0,2)$$\end{document} via the spectrum of some Toeplitz operators on the Hardy space H2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H^{2}$$\end{document}. Second, we give examples to show that Shimorin’s condition for the shift operator fails on the Ia\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$I_{a}$$\end{document} type zero based invariant subspaces of the weighted Bergman spaces La2(dAα)(α>0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_{a}^{2}(dA_{\alpha })(\alpha >0)$$\end{document}.