Parameter estimation of unknown fractional-order memristor-based chaotic systems by a hybrid artificial bee colony algorithm combined with differential evolution

被引:0
作者
Wenjuan Gu
Yongguang Yu
Wei Hu
机构
[1] Beijing Jiaotong University,School of Economics and Management
[2] Beijing Jiaotong University,School of Science
来源
Nonlinear Dynamics | 2016年 / 84卷
关键词
Parameter estimation; Fractional-order chaotic systems ; Memristor; Hybrid algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, parameter estimation of unknown fractional-order memristor-based chaotic systems is concerned. Firstly, the parameter estimation is transformed into a multi-dimensional optimization problem, where the fractional orders are treated as independent variables. Then, a hybrid artificial bee colony algorithm combined with differential evolution and other searching mechanisms is put forward to solve the optimization problem. Finally, to demonstrate the effectiveness of the proposed method, numerical simulations based on two typical fractional-order memristor-based chaotic systems are conducted. The simulation results shows that the proposed approach for parameter estimation of unknown chaotic systems is a successful and promising method with higher calculation accuracy, faster convergence speed, and stronger robustness.
引用
收藏
页码:779 / 795
页数:16
相关论文
共 126 条
[1]  
Diethelm K(2002)A predictor-corrector approach for the numerical solution of fractional differential equations Nonlinear Dyn. 29 3-22
[2]  
Ford NJ(2015)Variety of the cosmic plasmas: General variable-coefficient Korteweg-de Vries-Burgers equation with experimental/observational support EPL-Europhys. Lett. 110 15002-247
[3]  
Freed AD(2015)B Ocean Eng. 96 245-61
[4]  
Gao XY(2015)cklund transformation and shock-wave-type solutions for a generalized Z. Naturforsch. A. 70 59-2397
[5]  
Gao XY(2011)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics IEEE T. Circuits-I. 58 2388-214
[6]  
Gao XY(1999)Incompressible-fluid symbolic computation and B IEEE T. Automat. Contr. 44 208-1314
[7]  
Radwan AG(2008)cklund transformation: Chaos Soliton. Fract. 36 1305-519
[8]  
Salama KN(1971)-dimensional variable-coefficient Boiti-Leon-Manna-Pempinelli model IEEE Trans. Circuit Theory 18 507-83
[9]  
Podlubny I(2008)Passive and active elements using fractional circuit Nature 453 80-43
[10]  
Chen WC(2008)Fractional-order systems and Nature 453 42-424