Isothermal Fatigue and Creep-Fatigue Interaction Behavior of Nickel-Base Directionally Solidified Superalloy

被引:0
|
作者
A. U. Haq
X. G. Yang
D. Q. Shi
机构
[1] Beihang University,School of Energy and Power Engineering
来源
Strength of Materials | 2018年 / 50卷
关键词
fatigue; creep; creep-fatigue interaction; nickel-base superalloy;
D O I
暂无
中图分类号
学科分类号
摘要
The creep-fatigue interaction in directionally solidified nickel-base superalloy was analyzed with the modified Chaboche-based unified viscoplasticity constitutive model. The model features the anisotropic material behavior, hardening/softening, and stress relaxation. Simple low-cyclic fatigue and specified hold time experiments were conducted on a directionally solidified superalloy (DZ125) at temperatures over 760°C. The material parameters were optimized considering its tensile, cyclic and creep behavior with the Levenberg–Marquardt optimization procedure. The model was constructed in FORTRAN and integrated in FEA software UMAT/ABAQUS. The results show that experimental and simulated hysteresis loop size/shape, peak stresses, stress relaxation, and related areas are closely matched. The modified constitutive model was found to be instrumental for revealing the fatigue and creep-fatigue interaction behavior of such materials and can be used for practical applications.
引用
收藏
页码:98 / 106
页数:8
相关论文
共 50 条
  • [1] Isothermal Fatigue and Creep-Fatigue Interaction Behavior of Nickel-Base Directionally Solidified Superalloy
    Haq, A. U.
    Yang, X. G.
    Shi, D. Q.
    STRENGTH OF MATERIALS, 2018, 50 (01) : 98 - 106
  • [2] Creep-fatigue deformation micromechanisms of a directionally solidified nickel-base superalloy at 850°C
    Rai, R. K.
    Sahu, J. K.
    Das, S. K.
    Paulose, N.
    Fernando, C.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2020, 43 (01) : 51 - 62
  • [3] Fatigue and creep-fatigue behavior of a nickel-base superalloy at 850°C
    Chen, LJ
    Yao, G
    Tian, JF
    Wang, ZG
    Zhao, HY
    INTERNATIONAL JOURNAL OF FATIGUE, 1998, 20 (07) : 543 - 548
  • [4] Thermomechanical fatigue of a coated directionally solidified nickel-base superalloy
    Kowalewski, R
    Mughrabi, H
    LOW CYCLE FATIGUE AND ELASTO-PLASTIC BEHAVIOUR OF MATERIALS, 1998, : 149 - 154
  • [5] Creep fatigue behaviour of directionally solidified nickel base superalloy
    Zrnik, J
    Yu, Y
    Wang, JA
    Zitnansky, M
    Mamuzic, I
    Hornak, P
    METALURGIJA, 1996, 35 (01): : 11 - 15
  • [6] Temperature effect on the low cycle fatigue behavior of a directionally solidified nickel-base superalloy
    He, Zhiwu
    Zhang, Yangyang
    Qiu, Wenhui
    Shi, Hui-Ji
    Gu, Jialin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 676 : 246 - 252
  • [7] Creep-fatigue behavior at high temperature of a UDIMET 720 nickel-base superalloy
    Billot, T.
    Villechaise, P.
    Jouiad, M.
    Mendez, J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2010, 32 (05) : 824 - 829
  • [8] Creep-rupture behavior of a directionally solidified nickel-base superalloy
    J. T. Guo
    C. Yuan
    H. C. Yang
    V. Lupinc
    M. Maldini
    Metallurgical and Materials Transactions A, 2001, 32 : 1103 - 1110
  • [9] Creep-rupture behavior of a directionally solidified nickel-base superalloy
    Guo, JT
    Yuan, C
    Yang, HC
    Lupinc, V
    Maldini, M
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2001, 32 (05): : 1103 - 1110
  • [10] Microstructural changes during thermal fatigue in a nickel-base directionally solidified superalloy
    Zhao, Kai
    ENVIRONMENTAL PROTECTION AND RESOURCES EXPLOITATION, PTS 1-3, 2013, 807-809 : 2722 - 2725