Word and Conjugacy Problems in Groups \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\boldsymbol{G}_{\boldsymbol{k+1}}^{\boldsymbol{k}}$$\end{document}

被引:0
作者
D. A. Fedoseev
A. B. Karpov
V. O. Manturov
机构
[1] Lomonosov Moscow State University,
[2] V. A. Trapeznikov Institute of Control Sciences,undefined
[3] Russian Academy of Sciences,undefined
[4] Bauman Moscow State Technical University,undefined
[5] Novosibirsk State University,undefined
关键词
group; Howie diagram; invariant; manifold; braid; group; dynamical system; small cancellation; word problem; conjugacy problem.;
D O I
10.1134/S1995080220020067
中图分类号
学科分类号
摘要
引用
收藏
页码:176 / 193
页数:17
相关论文
共 17 条
  • [1] Berrick A. J.(2005)Configurations, braids, and homotopy groups J. Am. Math. Soc. 19 265-326
  • [2] Cohen F. R.(1992)Aspherical relative presentations Proc. Edinburgh Math. Soc. 35 1-39
  • [3] Wong Y. L.(2006)Free-by-cyclic groups have solvable conjugacy problem Bull. London Math. Soc. 38 787-794
  • [4] Wu J.(1983)The solution of length three equations over groups Proc. Edinburgh Math. Soc. 26 89-96
  • [5] Bogley W. A.(1994)Braided monoidal 2-categories and Manin–Schechtmann higher braid groups J. Pure Appl. Math. 92 241-167
  • [6] Pride S. J.(2018)The groups Math. Notes 103 593-609
  • [7] Bogopolski O.(1990) with additional structures Adv. Stud. Pure Math. 17 289-308
  • [8] Martino A.(2017)Arrangements of hyperplanes, higher braid groups and higher Bruhat orders Russ. Math. Surveys 72 378-380
  • [9] Maslakova O.(undefined)On the groups undefined undefined undefined-undefined
  • [10] Ventura E.(undefined)undefined undefined undefined undefined-undefined