Sulla stabilità di un fluido politropico, viscoso e pesante in un contenitore limitato da pareti perfette conduttrici di calore

被引:0
作者
Benabidallah R. [1 ]
Padula M. [2 ]
机构
[1] Dipartimento di Matematica, Università di Torino, 10123 Torino
[2] Dipartimento di Matematica, Università di Ferrara, 44100 Ferrara
来源
Annali dell’Università’ di Ferrara | 1999年 / 45卷 / 1期
关键词
D O I
10.1007/BF02825949
中图分类号
学科分类号
摘要
We consider the equation system for a compressible viscous polytropic fluid in a regualar bounded domain and we study the asymptotic behavior as time goes to infinity of perturbations with respect to the basic rest state. Under the assumption of the smallness of the gradient of the given temperature on the boundary, we prove the exponential decay of theL2-norm of the difference between the solution corresponding to arbitrary initial data and the rest state. © 1999 Università degli Studi di Ferrara.
引用
收藏
页码:127 / 161
页数:34
相关论文
共 18 条
[1]  
Benabidallah R., Padula M., Mulla stabilità di un fluido politropico, viscoso e pesante in un contenitore limitato da pareti perfette conduttrici di calore, (1999)
[2]  
Benabidallah R., Padula M., On a comparison between critical Rayleigh numbers Poiseuille-Bénard problem
[3]  
Coscia V., Padula M., Quantitative bounds for nonlinear stability in compressible Bénard problem, Hydrosoft, 2, pp. 180-189, (1989)
[4]  
Coscia V., Padula M., Nonlinear energy stability in compressible atmosphere, Geophys. Astrophys. Fluid Dynamics, 54, pp. 49-98, (1990)
[5]  
Ericksen J.L., A thermo-kinetic wiev of elastic stability theory, Int. J. Solids Structures, 2, pp. 573-780, (1966)
[6]  
Galdi G.P., An introduction to the mathematical theory of the Navier-Stokes equations, Springer tracts in Natural Philosophy, 38, (1995)
[7]  
Galdi G.P., Padula M., A new approach to energy theory in the stability of fluid motion, Arch. Ratl. Mech. Anal., 110, pp. 187-286, (1990)
[8]  
Galdi G.P., Rionero S., Weighted energy methods in fluid dynamics and elasticity, Lecture Notes in Math., 1134, (1976)
[9]  
Matsumura A., Padula M., Stability of the stationary soluitions of compressible viscous fluids with large external potential forces, Stab. Appl. Anal. Cont. Media, 2, pp. 183-202, (1992)
[10]  
Novotny A., Padula M., Existence and uniqueness of stationary solutions for viscous compressible heat conductive fluid with large potential and small nonpotential external forces, Siberian Math. J., 34, pp. 120-146, (1993)