共 49 条
[21]
Dynamical system approach and exp(-Φ(ζ))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$exp(-\Phi (\zeta ))$$\end{document} Expansion method for optical solitons in the complex nonlinear Fokas–Lenells model of optical fiber
[J].
Optical and Quantum Electronics,
56 (5)
[22]
Exact analytical solutions to the geodesic equations in general relativity via (G′/G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(G'/G)$$\end{document} - expansion method
[J].
General Relativity and Gravitation,
2022, 54 (8)
[23]
Exact traveling wave solutions of generalized fractional Tzitze´\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\acute{e}$$\end{document}ica-type nonlinear evolution equations in nonlinear optics
[J].
Optical and Quantum Electronics,
2023, 55 (6)
[24]
A Novel G′/G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {{G}'/G} \right) $$\end{document}-Expansion Method and its Application to the (3 + 1)-Dimensional Burger’s Equations
[J].
International Journal of Applied and Computational Mathematics,
2016, 2 (1)
:13-24
[25]
Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp-ϕε\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\exp \left( { - \phi \left( \varepsilon \right)} \right)$$\end{document}-expansion method
[J].
Optical and Quantum Electronics,
2017, 49 (4)
[26]
Optical solitons for complex Ginzburg–Landau model with Kerr, quadratic–cubic and parabolic law nonlinearities in nonlinear optics by the exp(-Φ(ζ))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {exp}(-\Phi (\zeta ))$$\end{document} expansion method
[J].
Pramana,
2020, 94 (1)
[27]
Soliton solutions of the generalized Klein–Gordon equation by using G′G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( \frac{G^{\prime }}{G}\right) $$\end{document}-expansion method
[J].
Computational and Applied Mathematics,
2014, 33 (3)
:831-839
[28]
A comparative study of two fractional nonlinear optical model via modified G′G2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( \frac{G^{\prime }}{G^2}\right)$$\end{document}-expansion method
[J].
Optical and Quantum Electronics,
2024, 56 (2)
[29]
Dynamics Investigation and Solitons Formation for (2+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2+1)$$\end{document} -Dimensional Zoomeron Equation and Foam Drainage Equation
[J].
Journal of Nonlinear Mathematical Physics,
2023, 30 (2)
:628-645
[30]
Solitary Wave Solutions for (1+2)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(1+2)$$\end{document}-Dimensional Nonlinear Schrödinger Equation with Dual Power Law Nonlinearity
[J].
International Journal of Applied and Computational Mathematics,
2019, 5 (5)