Application of tan(Φ(ξ)/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\Phi (\xi )/2)$$\end{document}-expansion method to solve some nonlinear fractional physical model

被引:0
作者
Jalil Manafian
Reza Farshbaf Zinati
机构
[1] University of Tabriz,Department of Applied Mathematics, Faculty of Mathematical Science
[2] Islamic Azad University,Department of Mechanical Engineering, Tabriz Branch
关键词
-expansion method; Fractional biological population model; Fractional Burgers; Fractional Cahn–Hilliard; Fractional Whitham–Broer–Kaup; Fractional Fokas; 35Q79; 35Q51; 35Q35;
D O I
10.1007/s40010-018-0550-2
中图分类号
学科分类号
摘要
Based on the tan(Φ(ξ)/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\Phi (\xi )/2)$$\end{document}-expansion method, five nonlinear fractional physical models for obtaining the solutions containing three types hyperbolic function, trigonometric function and rational function solutions are investigated. These equations are the time fractional biological population model, time fractional Burgers, time fractional Cahn–Hilliard, space–time fractional Whitham–Broer–Kaup, space–time fractional Fokas equations. The fractional derivative is described in the Caputo sense. We obtained the exact solutions for the aforementioned nonlinear fractional equations. A generalized fractional complex transform is appropriately used to convert these equations to ordinary differential equations which subsequently resulted into number of exact solutions.
引用
收藏
页码:67 / 86
页数:19
相关论文
共 49 条
[21]   Dynamical system approach and exp(-Φ(ζ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$exp(-\Phi (\zeta ))$$\end{document} Expansion method for optical solitons in the complex nonlinear Fokas–Lenells model of optical fiber [J].
A. A. Elsadany ;
Fahad Sameer Alshammari ;
Mohammed K. Elboree .
Optical and Quantum Electronics, 56 (5)
[23]   Exact traveling wave solutions of generalized fractional Tzitze´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{e}$$\end{document}ica-type nonlinear evolution equations in nonlinear optics [J].
Hadi Rezazadeh ;
Fiza Batool ;
Mustafa Inc ;
Lanre Akinyemi ;
Mir Sajjad Hashemi .
Optical and Quantum Electronics, 2023, 55 (6)
[24]   A Novel G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{G}'/G} \right) $$\end{document}-Expansion Method and its Application to the (3 + 1)-Dimensional Burger’s Equations [J].
Muhammad Shakeel ;
Syed Tauseef Mohyud-Din .
International Journal of Applied and Computational Mathematics, 2016, 2 (1) :13-24
[25]   Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp-ϕε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp \left( { - \phi \left( \varepsilon \right)} \right)$$\end{document}-expansion method [J].
K. Hosseini ;
A. Bekir ;
R. Ansari .
Optical and Quantum Electronics, 2017, 49 (4)
[27]   Soliton solutions of the generalized Klein–Gordon equation by using G′G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G}\right) $$\end{document}-expansion method [J].
M. Mirzazadeh ;
M. Eslami ;
Anjan Biswas .
Computational and Applied Mathematics, 2014, 33 (3) :831-839
[28]   A comparative study of two fractional nonlinear optical model via modified G′G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G^{\prime }}{G^2}\right)$$\end{document}-expansion method [J].
Abdul Saboor ;
Muhammad Shakeel ;
Xinge Liu ;
Asim Zafar ;
Muhammad Ashraf .
Optical and Quantum Electronics, 2024, 56 (2)
[29]   Dynamics Investigation and Solitons Formation for (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document} -Dimensional Zoomeron Equation and Foam Drainage Equation [J].
Fiza Batool ;
Ghazala Akram ;
Maasoomah Sadaf ;
Umair Mehmood .
Journal of Nonlinear Mathematical Physics, 2023, 30 (2) :628-645
[30]   Solitary Wave Solutions for (1+2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1+2)$$\end{document}-Dimensional Nonlinear Schrödinger Equation with Dual Power Law Nonlinearity [J].
Pallavi Verma ;
Lakhveer Kaur .
International Journal of Applied and Computational Mathematics, 2019, 5 (5)