Application of tan(Φ(ξ)/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\Phi (\xi )/2)$$\end{document}-expansion method to solve some nonlinear fractional physical model

被引:0
作者
Jalil Manafian
Reza Farshbaf Zinati
机构
[1] University of Tabriz,Department of Applied Mathematics, Faculty of Mathematical Science
[2] Islamic Azad University,Department of Mechanical Engineering, Tabriz Branch
关键词
-expansion method; Fractional biological population model; Fractional Burgers; Fractional Cahn–Hilliard; Fractional Whitham–Broer–Kaup; Fractional Fokas; 35Q79; 35Q51; 35Q35;
D O I
10.1007/s40010-018-0550-2
中图分类号
学科分类号
摘要
Based on the tan(Φ(ξ)/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\Phi (\xi )/2)$$\end{document}-expansion method, five nonlinear fractional physical models for obtaining the solutions containing three types hyperbolic function, trigonometric function and rational function solutions are investigated. These equations are the time fractional biological population model, time fractional Burgers, time fractional Cahn–Hilliard, space–time fractional Whitham–Broer–Kaup, space–time fractional Fokas equations. The fractional derivative is described in the Caputo sense. We obtained the exact solutions for the aforementioned nonlinear fractional equations. A generalized fractional complex transform is appropriately used to convert these equations to ordinary differential equations which subsequently resulted into number of exact solutions.
引用
收藏
页码:67 / 86
页数:19
相关论文
共 49 条
[11]   Painlevé analysis, Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Phi }$$\end{document}-integrable and exact solutions to the (3+1)-dimensional nonlinear evolution equations [J].
Hanze Liu ;
Xiqiang Liu ;
Zenggui Wang ;
Xiangpeng Xin .
Nonlinear Dynamics, 2016, 85 (1) :281-286
[12]   Solitons and other solutions to the extended Gerdjikov–Ivanov equation in DWDM system by the exp(-ϕ(ζ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\exp (-\phi (\zeta ))$$\end{document}-expansion method [J].
Saleh M. Hassan ;
Abdulmalik A. Altwaty .
Ricerche di Matematica, 2024, 73 (5) :2397-2410
[15]   Bernoulli (G′/G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(G'/G)$$\end{document}-expansion method for nonlinear Schrödinger equation under effect of constant potential [J].
Najva Aminakbari ;
Yongyi Gu ;
Wenjun Yuan .
Optical and Quantum Electronics, 2021, 53 (6)
[16]   Testing efficiency of the generalised G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {{{G}'}/G} \right) $$\end{document}-expansion method for solving nonlinear evolution equations [J].
G C Paul ;
A H M Rashedunnabi ;
M D Haque .
Pramana, 2019, 92 (2)
[17]   The modified multiple (G′/G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$G^{\prime }/G$\end{document})-expansion method and its application to Sharma–Tasso–Olver equation [J].
Zhang Zhe ;
Desheng Li .
Pramana, 2014, 83 (1) :95-105
[19]   Exact solutions of perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity by improved tanϕξ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{tan}} \left( {\frac{{\boldsymbol{\phi}} \left( {\boldsymbol{\xi}} \right)}{{\textbf{2}}}} \right)$$\end{document}-expansion method [J].
Naveed Ahmed ;
Amna Irshad ;
Syed Tauseef Mohyud-Din ;
Umar Khan .
Optical and Quantum Electronics, 2018, 50 (1)