共 49 条
[11]
Painlevé analysis, Φ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\Phi }$$\end{document}-integrable and exact solutions to the (3+1)-dimensional nonlinear evolution equations
[J].
Nonlinear Dynamics,
2016, 85 (1)
:281-286
[12]
Solitons and other solutions to the extended Gerdjikov–Ivanov equation in DWDM system by the exp(-ϕ(ζ))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\exp (-\phi (\zeta ))$$\end{document}-expansion method
[J].
Ricerche di Matematica,
2024, 73 (5)
:2397-2410
[13]
Multi-peakons, lumps, and other solitons solutions for the (2+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{2+1}$$\end{document})-dimensional generalized Benjamin–Ono equation: an inverse (G′/G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\varvec{(G'/G)}$$\end{document}-expansion method and real-world applications
[J].
Nonlinear Dynamics,
2023, 111 (24)
:22499-22512
[14]
Extended (G′G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({\frac{G^{\prime }}{G}})$$\end{document}-Expansion Method for Konopelchenko–Dubrovsky (KD) Equation of Fractional Order
[J].
International Journal of Applied and Computational Mathematics,
2017, 3 (Suppl 1)
:161-172
[15]
Bernoulli (G′/G)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(G'/G)$$\end{document}-expansion method for nonlinear Schrödinger equation under effect of constant potential
[J].
Optical and Quantum Electronics,
2021, 53 (6)
[16]
Testing efficiency of the generalised G′/G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left( {{{G}'}/G} \right) $$\end{document}-expansion method for solving nonlinear evolution equations
[J].
Pramana,
2019, 92 (2)
[17]
The modified multiple (G′/G\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$G^{\prime }/G$\end{document})-expansion method and its application to Sharma–Tasso–Olver equation
[J].
Pramana,
2014, 83 (1)
:95-105
[18]
New exact solutions of the Tzitzéica type equations arising in nonlinear optics using a modified version of the improved tanΦξ/2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tan \left( {\varPhi \left( \xi \right)/2} \right)$$\end{document}-expansion method
[J].
Optical and Quantum Electronics,
2017, 49 (8)
[19]
Exact solutions of perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity by improved tanϕξ2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{tan}} \left( {\frac{{\boldsymbol{\phi}} \left( {\boldsymbol{\xi}} \right)}{{\textbf{2}}}} \right)$$\end{document}-expansion method
[J].
Optical and Quantum Electronics,
2018, 50 (1)
[20]
(G′G2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{G^{'}}{G^{2}}$$\end{document})-Expansion method: new traveling wave solutions for some nonlinear fractional partial differential equations
[J].
Optical and Quantum Electronics,
2018, 50 (3)