Application of tan(Φ(ξ)/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\Phi (\xi )/2)$$\end{document}-expansion method to solve some nonlinear fractional physical model

被引:0
作者
Jalil Manafian
Reza Farshbaf Zinati
机构
[1] University of Tabriz,Department of Applied Mathematics, Faculty of Mathematical Science
[2] Islamic Azad University,Department of Mechanical Engineering, Tabriz Branch
关键词
-expansion method; Fractional biological population model; Fractional Burgers; Fractional Cahn–Hilliard; Fractional Whitham–Broer–Kaup; Fractional Fokas; 35Q79; 35Q51; 35Q35;
D O I
10.1007/s40010-018-0550-2
中图分类号
学科分类号
摘要
Based on the tan(Φ(ξ)/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tan (\Phi (\xi )/2)$$\end{document}-expansion method, five nonlinear fractional physical models for obtaining the solutions containing three types hyperbolic function, trigonometric function and rational function solutions are investigated. These equations are the time fractional biological population model, time fractional Burgers, time fractional Cahn–Hilliard, space–time fractional Whitham–Broer–Kaup, space–time fractional Fokas equations. The fractional derivative is described in the Caputo sense. We obtained the exact solutions for the aforementioned nonlinear fractional equations. A generalized fractional complex transform is appropriately used to convert these equations to ordinary differential equations which subsequently resulted into number of exact solutions.
引用
收藏
页码:67 / 86
页数:19
相关论文
共 119 条
[1]  
Kilbas AA(2001)Differential equations of fractional order: methods, results problems Appl Anal 78 153-192
[2]  
Trujillo JJ(2011)Fractional sub-equation method and its applications to nonlinear fractional PDEs Phys Lett A 375 1069-1073
[3]  
Zhang S(2009)Exact solutions of fractional-order biological population model Commun Theor Phys Beijing China 52 992-996
[4]  
Zhang HQ(2013)A new approach for solving fractional partial differential equations J Appl Math 22 110202-219
[5]  
El-Sayed AMA(2014)Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations Abs Appl Anal 51 207-4610
[6]  
Rida SZ(2013)Exact solutions of nonlinear fractional differential equations by (G Chin Phys B 17 4602-2844
[7]  
Arafa AAM(2004)/G)-expansion method Appl Numer Math 17 2833-645
[8]  
Meng F(2012)A conservative difference scheme for the viscous Cahn–Hilliard equation with a nonconstant gradient energy coefficient Commun Nonlinear Sci Numer Simul 59 636-479
[9]  
Singh J(2012)Numerical solution of nonlinear Jaulent–Miodek and Whitham–Broer–Kaup equations Commun Nonlinear Sci Numer Simul 26 448-949
[10]  
Kumar D(2014)Gauge transformation, elastic and inelastic interactions for the Whitham–Broer–Kaup shallow-water model Rom J Phys 65a 935-708