Kähler manifolds and the curvature operator of the second kind

被引:0
作者
Xiaolong Li
机构
[1] Wichita State University,Department of Mathematics, Statistics and Physics
来源
Mathematische Zeitschrift | 2023年 / 303卷
关键词
Curvature operator of the second kind; Orthogonal bisectional curvature; Holomorphic sectional curvature; Rigidity theorems; 53C55; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
This article aims to investigate the curvature operator of the second kind on Kähler manifolds. The first result states that an m-dimensional Kähler manifold with 32(m2-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{2}(m^2-1)$$\end{document}-nonnegative (respectively, 32(m2-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{3}{2}(m^2-1)$$\end{document}-nonpositive) curvature operator of the second kind must have constant nonnegative (respectively, nonpositive) holomorphic sectional curvature. The second result asserts that a closed m-dimensional Kähler manifold with 3m3-m+22m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{3m^3-m+2}{2m}\right) $$\end{document}-positive curvature operator of the second kind has positive orthogonal bisectional curvature, thus being biholomorphic to CPm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {C}}}{{\mathbb {P}}}^m$$\end{document}. We also prove that 3m3+2m2-3m-22m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{3m^3+2m^2-3m-2}{2m}\right) $$\end{document}-positive curvature operator of the second kind implies positive orthogonal Ricci curvature. Our approach is pointwise and algebraic.
引用
收藏
相关论文
共 55 条
[1]  
Berger M(1969)Some decompositions of the space of symmetric tensors on a Riemannian manifold J. Differ. Geom. 3 379-392
[2]  
Ebin D(2008)Manifolds with positive curvature operators are space forms Ann. Math. (2) 167 1079-1097
[3]  
Böhm C(1960)On the curvature tensor of the Hermitian symmetric manifolds Ann. Math. 2 508-521
[4]  
Wilking B(1978)Curvature operators: pinching estimates and geometric examples. Ann. Sci. École Norm. Sup. (4) 11 71-92
[5]  
Borel A(2008)A general convergence result for the Ricci flow in higher dimensions Duke Math. J. 145 585-601
[6]  
Bourguignon J-P(2019)Ricci flow with surgery on manifolds with positive isotropic curvature. Ann. Math. (2) 190 465-559
[7]  
Karcher H(1960)On compact, locally symmetric Kähler manifolds Ann. Math. 2 472-507
[8]  
Brendle S(1991)Pointwise Ann. Glob. Anal. Geom. 9 161-176
[9]  
Brendle S(2007)-pinched Adv. Math. 215 427-445
[10]  
Calabi E(2022)-manifolds Trans. Am. Math. Soc. 375 7925-7944