Quantization of Lie bialgebras, Part IV: The coinvariant construction and the quantum KZ equations

被引:0
作者
Etingof P. [1 ,2 ]
Kazhdan D. [1 ]
机构
[1] Department of Mathematics, Harvard University, Cambridge
[2] Department of Mathematics 2-165, MIT, Cambridge
基金
美国国家科学基金会;
关键词
Hopf algebra; Lie bialgebra; Quantization;
D O I
10.1007/s000290050003
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:79 / 104
页数:25
相关论文
共 13 条
  • [1] Cherednik I.V., On irreducible representations of elliptic quantum R-algebras, Soviet Math. Dokl., 34, 3, (1987)
  • [2] Drinfeld V.G., Quantum groups, Proc. Int. Congr. Math., 1, pp. 798-820, (1986)
  • [3] Drinfeld V.G., On almost cocommutative Hopf algebras, Len. Math. J., 1, pp. 321-342, (1990)
  • [4] Etingof P., Kazhdan D., Quantization of Lie bialgebras, I. q-alg 9506005, Selecta Math., 2, 1, pp. 1-41, (1996)
  • [5] Etingof P., Kazhdan D., Quantization of Lie Bialgebras, II, (Revised Version), (1996)
  • [6] Etingof P., Kazhdan D., Quantization of Lie Bialgebras, III, (Revised Version), (1996)
  • [7] Enriquez B., Felder G., Coinvariants of Yangian Doubles and Quantum Knizhnik-Zamolodchikov Equations, (1997)
  • [8] Frenkel I.B., Reshetikhin N.Y., Quantum affine algebras and holonomic difference equations, Comm. Math. Phys., 146, pp. 1-60, (1992)
  • [9] Hasegawa K., Crossing symmetry in elliptic solutions of the Yang-Baxter equation and a new L-operator for Belavin's solution, J. Phys. A: Math. Gen., 26, pp. 3211-3228, (1993)
  • [10] Kazhdan D., Soibelman Y., Representations of quantum affine algebras, Selecta Math., 1, 3, (1995)