Solution of a Class of Nonlinear Matrix Equations

被引:0
|
作者
Samik Pakhira
Snehasish Bose
Sk Monowar Hossein
机构
[1] Aliah University,Department of Mathematics and Statistics
[2] Indian Statistical Institute,Statistics and Mathematics Unit
来源
Bulletin of the Iranian Mathematical Society | 2021年 / 47卷
关键词
Matrix equation; Fixed point; Partially ordered set; 15A24; 47H10; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present several necessary and sufficient conditions for the existence of Hermitian positive definite solutions of nonlinear matrix equations of the form Xs+A∗X-tA+B∗X-pB=Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^s+A^*X^{-t}A+B^*X^{-p}B=Q$$\end{document}, where s,t,p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s,t,p \ge 1$$\end{document}, A, B are nonsingular matrices and Q is a Hermitian positive definite matrix. We derive some iterations to compute the solutions followed by some examples. In this context, we also discuss about the maximal and the minimal Hermitian positive definite solution of this particular nonlinear matrix equation.
引用
收藏
页码:415 / 434
页数:19
相关论文
共 50 条
  • [41] The Common Solution of Twelve Matrix Equations over the Quaternions
    Yuan, Wei-Jie
    Wang, Qing-Wen
    FILOMAT, 2022, 36 (03) : 887 - 903
  • [42] The Hermitian Positive Definite Solution of Some Matrix Equations
    Liu, Xuetting
    Wei, Peiyu
    2009 ASIA-PACIFIC CONFERENCE ON INFORMATION PROCESSING (APCIP 2009), VOL 2, PROCEEDINGS, 2009, : 248 - +
  • [43] Low rank approximation solution of a class of matrix equation
    Duan, Xuefeng
    Ding, Zhenya
    Zhang, Xinjun
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 174 - 177
  • [44] A novel iterative method for the solution of a nonlinear matrix equation
    Erfanifar, Raziyeh
    Sayevand, Khosro
    Esmaeili, Hamid
    APPLIED NUMERICAL MATHEMATICS, 2020, 153 : 503 - 518
  • [45] On the numerical solution of a nonlinear matrix equation in Markov chains
    Guo, CH
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 288 (1-3) : 175 - 186
  • [46] Multiplicity of positive solutions of a class of nonlinear fractional differential equations
    Sun, JP
    Zhao, YH
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) : 73 - 80
  • [47] Solving systems of nonlinear matrix equations involving Lipshitzian mappings
    Maher Berzig
    Bessem Samet
    Fixed Point Theory and Applications, 2011
  • [48] On modified -contractions and an iterative scheme for solving nonlinear matrix equations
    Sawangsup, Kanokwan
    Sintunavarat, Wutiphol
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (02)
  • [49] Solving systems of nonlinear matrix equations involving Lipshitzian mappings
    Berzig, Maher
    Samet, Bessem
    FIXED POINT THEORY AND APPLICATIONS, 2011, : 1 - 10
  • [50] On Hermitian Positive Definite Solutions of a Type of Nonlinear Matrix Equations
    Li, Hongkui
    Liu, Xueting
    2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL III, 2009, : 320 - +