Solution of a Class of Nonlinear Matrix Equations

被引:0
|
作者
Samik Pakhira
Snehasish Bose
Sk Monowar Hossein
机构
[1] Aliah University,Department of Mathematics and Statistics
[2] Indian Statistical Institute,Statistics and Mathematics Unit
来源
Bulletin of the Iranian Mathematical Society | 2021年 / 47卷
关键词
Matrix equation; Fixed point; Partially ordered set; 15A24; 47H10; 47H09;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we present several necessary and sufficient conditions for the existence of Hermitian positive definite solutions of nonlinear matrix equations of the form Xs+A∗X-tA+B∗X-pB=Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X^s+A^*X^{-t}A+B^*X^{-p}B=Q$$\end{document}, where s,t,p≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s,t,p \ge 1$$\end{document}, A, B are nonsingular matrices and Q is a Hermitian positive definite matrix. We derive some iterations to compute the solutions followed by some examples. In this context, we also discuss about the maximal and the minimal Hermitian positive definite solution of this particular nonlinear matrix equation.
引用
收藏
页码:415 / 434
页数:19
相关论文
共 50 条
  • [21] On the solution of parameterized Sylvester matrix equations
    Dehghani-Madiseh, Marzieh
    JOURNAL OF MATHEMATICAL MODELING, 2022, 10 (04): : 535 - 553
  • [22] Strong convergence to a solution of nonlinear equations
    Sharma, Shagun
    Chandok, Sumit
    FILOMAT, 2024, 38 (24) : 8663 - 8675
  • [23] The *congruence class of the solutions of some matrix equations
    Zheng, Bing
    Yea, Lijuan
    Cvetkovic-Ilic, Dragana S.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 57 (04) : 540 - 549
  • [24] CLASSICAL SOLUTIONS FOR A CLASS OF NONLINEAR WAVE EQUATIONS
    Georgiev, Svetlin
    Mebarki, Karima
    Zennir, Khaled
    THEORETICAL AND APPLIED MECHANICS, 2021, 48 (02) : 257 - 272
  • [25] The Hermitian Positive Definite Solution of Nonlinear Matrix Equations X plus A*X-2A=I
    Zhao, Guangyuan
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON COMPUTER TECHNOLOGY AND DEVELOPMENT, VOL 2, 2009, : 561 - 563
  • [26] Solution to Several Split Quaternion Matrix Equations
    Liu, Xin
    Shi, Tong
    Zhang, Yang
    MATHEMATICS, 2024, 12 (11)
  • [27] On the Hermitian structures of the solution to a pair of matrix equations
    Wang, Qing-Wen
    Zhang, Xiang
    He, Zhuo-Heng
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (01) : 73 - 90
  • [28] η-Hermitian Solution to a System of Quaternion Matrix Equations
    Liu, Xin
    He, Zhuo-Heng
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4007 - 4027
  • [29] On (,?,R)-Contractions and Applications to Nonlinear Matrix Equations
    Ameer, Eskandar
    Nazam, Muhammad
    Aydi, Hassen
    Arshad, Muhammad
    Mlaiki, Nabil
    MATHEMATICS, 2019, 7 (05)
  • [30] Optimal Approximate Solution of a Class of Matrix Equation
    Cheng, ChunRui
    Zhu, JunHui
    ADVANCES IN MANUFACTURING TECHNOLOGY, PTS 1-4, 2012, 220-223 : 2180 - 2183