PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document} deformation of angular Calogero models

被引:0
作者
Francisco Correa
Olaf Lechtenfeld
机构
[1] Universidad Austral de Chile,Instituto de Ciencias Físicas y Matemáticas
[2] Leibniz Universität Hannover,Institut für Theoretische Physik and Riemann Center for Geometry and Physics
关键词
Field Theories in Lower Dimensions; Integrable Field Theories; Conformal and W Symmetry; Discrete Symmetries;
D O I
10.1007/JHEP11(2017)122
中图分类号
学科分类号
摘要
The rational Calogero model based on an arbitrary rank-n Coxeter root system is spherically reduced to a superintegrable angular model of a particle moving on Sn−1 subject to a very particular potential singular at the reflection hyperplanes. It is outlined how to find conserved charges and to construct intertwining operators. We deform these models in a PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document}-symmetric manner by judicious complex coordinate transformations, which render the potential less singular. The PT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{P}\mathcal{T} $$\end{document} deformation does not change the energy eigenvalues but in some cases adds a previously unphysical tower of states. For integral couplings the new and old energy levels coincide, which roughly doubles the previous degeneracy and allows for a conserved nonlinear supersymmetry charge. We present the details for the generic rank-two (A2, G2) and all rank-three Coxeter systems (AD3, BC3 and H3), including a reducible case (A1⊗ 3).
引用
收藏
相关论文
共 57 条
[1]  
Polychronakos AP(2006)Physics and mathematics of Calogero particles J. Phys. A 39 12793-undefined
[2]  
Feigin MV(2003)Intertwining relations for the spherical parts of generalized Calogero operators Theor. Math. Phys. 135 497-undefined
[3]  
Hakobyan T(2009)Cuboctahedric Higgs oscillator from the Calogero model J. Phys. A 42 205206-undefined
[4]  
Nersessian A(2010)Hidden symmetries of integrable conformal mechanical systems Phys. Lett. A 374 801-undefined
[5]  
Yeghikyan V(2010)Action-angle variables for dihedral systems on the circle Phys. Lett. A 374 4647-undefined
[6]  
Hakobyan T(2011)Invariants of the spherical sector in conformal mechanics J. Phys. A 44 250-undefined
[7]  
Krivonos S(2012)The spherical sector of the Calogero model as a reduced matrix model Nucl. Phys. B 858 577-undefined
[8]  
Lechtenfeld O(2012)Action-angle variables and novel superintegrable systems Phys. Part. Nucl. 43 162-undefined
[9]  
Nersessian A(2013)The quantum angular Calogero-Moser model JHEP 07 151-undefined
[10]  
Lechtenfeld O(2014)Nonlinear supersymmetry in the quantum Calogero model JHEP 04 107-undefined