Baum-Katz’s Type Theorems for Pairwise Independent Random Elements in Certain Metric Spaces

被引:0
作者
Nguyen Tran Thuan
Nguyen Van Quang
机构
[1] Vinh University,Department of Mathematics
[2] University of Jyväskylä,Department of Mathematics and Statistics
来源
Acta Mathematica Vietnamica | 2020年 / 45卷
关键词
Baum-Katz theorem; Convex combination; Metric space; 28B99; 60F15; 60F25; 52A99;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, some Baum-Katz’s type theorems for pairwise independent random elements are extended to a metric space endowed with a convex combination operation. Our results are considered in the cases of identically distributed and non-identically distributed random elements. Some illustrative examples are provided to sharpen the results.
引用
收藏
页码:555 / 570
页数:15
相关论文
共 30 条
[1]  
Bai P(2014)On complete convergence and the strong law of large numbers for pairwise independent random variables Acta Math. Hungar. 142 502-518
[2]  
Chen PY(1965)Convergence rates in the laws of large numbers Trans. Am. Math. Soc. 120 108-123
[3]  
Sung SH(2012)Lr, convergence for B-valued random elements Acta Math. Sin. Engl. Ser. 28 857-868
[4]  
Baum LE(1981)An elementary proof of the strong law of large numbers Z. Wahrsch. Verw. Gebiete 55 119-122
[5]  
Katz M(2014)Baum-Katz type theorems for coordinatewise negatively associated random vectors in Hilbert spaces Acta Math. Hungar. 144 132-149
[6]  
Chen PY(1947)Complete convergence and the law of large numbers Proc. Nat. Acad. Sci. USA 33 25-31
[7]  
Wang DC(1963)The probability in the tail of a distribution Ann. Math. Statist. 34 312-318
[8]  
Etemadi N(2011)Convergence rates in the SLLN for some classes of dependent random fields J. Math. Anal. Appl. 380 571-584
[9]  
Huan NV(2012)On the strong laws of large numbers for double arrays of random variables in convex combination spaces Acta Math. Hungar. 134 543-564
[10]  
Quang NV(1997)The Hàjek-Rènyi inequality for Banach space valued martingales and the p smoothness of Banach spaces Statist. Probab. Lett. 32 245-248