Let [b, T] be the commutator generated by b and T, where b∈BMO(Rn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$b\in \mathrm {BMO}({\mathbb {R}}^{n})$$\end{document} and T is a Calderón–Zygmund singular integral operator. In this paper, the authors establish some strong type and weak type boundedness estimates including the LlogL\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L\log L$$\end{document} type inequality for [b, T] on the Herz-type spaces with variable exponent. Meanwhile, the similar results for the commutators [b,Il]\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[b,I_l]$$\end{document} of fractional integral operator are also obtained. As applications, we consider the regularity in the Herz-type spaces with variable exponent of strong solutions to nondivergence elliptic equations with VMO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathrm {VMO}$$\end{document} coefficients.
机构:
Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Kita 10 Nishi 8, Kita-kuDepartment of Mathematics, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Kita 10 Nishi 8, Kita-ku
机构:
China Univ Min & Technol Beijing, Dept Math, Beijing 100083, Peoples R ChinaChina Univ Min & Technol Beijing, Dept Math, Beijing 100083, Peoples R China