Automorphisms and derivations of exceptional simple lie algebras of family R

被引:0
作者
Mulyar O.A. [1 ]
机构
[1] Nizhnii-Novgorod State University, Nizhnii-Novgorod
基金
俄罗斯基础研究基金会;
关键词
Automorphism Group;
D O I
10.1007/s10958-005-0370-1
中图分类号
学科分类号
摘要
In the paper we describe automorphisms and derivations of simple Lie algebras of family R. The Lie algebra of the automorphism group is found. Bibliography: 11 titles. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:4735 / 4746
页数:11
相关论文
共 11 条
  • [1] Kuznetsov M.I., Melikyan algebras as Lie algebras of type G<sub>2</sub>, Comm. Algebra, 19, 4, pp. 1281-1312, (1991)
  • [2] Kostrikin A.I., A parametric family of simple Lie algebras, Izv. AN SSSR, Ser. Mat, 34, pp. 744-756, (1970)
  • [3] Brown G., On the structure of some Lie algebras of Kuznetsov, Michigan Math. J., 39, 7, pp. 85-90, (1992)
  • [4] Ermolaev Y.B., A family of simple Lie algebras over a field of characteristic 3, All-union Symposium on the Theory of Rings, Algebras, and Modules, pp. 52-53, (1982)
  • [5] Kuznetsov M.I., Classification of simple graded Lie algebras with a nonsemisimple component L<sub>0</sub>, Mat. Sb., 180, 2, pp. 147-158, (1989)
  • [6] Skryabin S.M., New series of simple Lie algebras, Mat. Sb., 183, 8, pp. 3-22, (1992)
  • [7] Wilson R.L., Classification of generalized Witt algebras over algebraically closed fields, Trans. Amer. Math. Soc., 153, pp. 191-210, (1971)
  • [8] Kuznetsov M.I., Truncated induced modules over transitive Lie algebras of characteristic p, Izv. AN SSSR, Ser. Mat., 53, pp. 557-589, (1989)
  • [9] Kostrikin A.I., Shafarevich I.R., Graded Lie algebras of finite characteristic, Izv. AN SSSR, Ser. Mat., 33, pp. 251-322, (1969)
  • [10] Dzhumadildaev A.S., Deformations of the Lie algebras W<sub>n</sub>(m), Mat. Sb., 180, 2, pp. 168-185, (1989)