Reconfigurable signal modulation in a ferroelectric tunnel field-effect transistor

被引:0
|
作者
Zhongyunshen Zhu
Anton E. O. Persson
Lars-Erik Wernersson
机构
[1] Lund University,Department of Electrical and Information Technology
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Reconfigurable transistors are an emerging device technology adding new functionalities while lowering the circuit architecture complexity. However, most investigations focus on digital applications. Here, we demonstrate a single vertical nanowire ferroelectric tunnel field-effect transistor (ferro-TFET) that can modulate an input signal with diverse modes including signal transmission, phase shift, frequency doubling, and mixing with significant suppression of undesired harmonics for reconfigurable analogue applications. We realize this by a heterostructure design in which a gate/source overlapped channel enables nearly perfect parabolic transfer characteristics with robust negative transconductance. By using a ferroelectric gate oxide, our ferro-TFET is non-volatilely reconfigurable, enabling various modes of signal modulation. The ferro-TFET shows merits of reconfigurability, reduced footprint, and low supply voltage for signal modulation. This work provides the possibility for monolithic integration of both steep-slope TFETs and reconfigurable ferro-TFETs towards high-density, energy-efficient, and multifunctional digital/analogue hybrid circuits.
引用
收藏
相关论文
共 50 条
  • [31] Field-effect transistor memories based on ferroelectric polymers
    Yujia Zhang
    Haiyang Wang
    Lei Zhang
    Xiaomeng Chen
    Yu Guo
    Huabin Sun
    Yun Li
    Journal of Semiconductors, 2017, 38 (11) : 5 - 18
  • [32] PHYSICS OF THE FERROELECTRIC NONVOLATILE MEMORY FIELD-EFFECT TRANSISTOR
    MILLER, SL
    MCWHORTER, PJ
    JOURNAL OF APPLIED PHYSICS, 1992, 72 (12) : 5999 - 6010
  • [33] Ferroelectric field-effect transistor based on transparent oxides
    Titkov, Ilya
    Pronin, Igor
    Delimova, Lubov
    Liniichuk, Ivan
    Grekhov, Igor
    THIN SOLID FILMS, 2007, 515 (24) : 8748 - 8751
  • [34] Field-effect transistor memories based on ferroelectric polymers
    Yujia Zhang
    Haiyang Wang
    Lei Zhang
    Xiaomeng Chen
    Yu Guo
    Huabin Sun
    Yun Li
    Journal of Semiconductors, 2017, (11) : 5 - 18
  • [35] Transposable Memory Based on the Ferroelectric Field-Effect Transistor
    Wang, Jianze
    Zhang, Wei
    Wu, Zhen
    Wang, Yimin
    Jiao, Leming
    Wang, Xiaolin
    Gong, Xiao
    Fong, Xuanyao
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [36] Analysis on Tunnel Field-Effect Transistor with Asymmetric Spacer
    Kim, Hyun Woo
    Kwon, Daewoong
    APPLIED SCIENCES-BASEL, 2020, 10 (09):
  • [37] Graphene antidot nanoribbon tunnel field-effect transistor
    Xiao, Zhixing
    MICRO & NANO LETTERS, 2022, 17 (08) : 169 - 174
  • [38] Investigation of the Junctionless Line Tunnel Field-Effect Transistor
    Yao, Lei
    Liang, Renrong
    Jiang, Chunsheng
    Wang, Jing
    Xu, Jun
    2014 INTERNATIONAL SYMPOSIUM ON NEXT-GENERATION ELECTRONICS (ISNE), 2014,
  • [39] Vertical Tunnel Field-Effect Transistor with Polysilicon Layer
    Lee, Won Joo
    Kwon, Hui Tae
    Choi, Hyun-Seok
    Wee, Daehoon
    Park, Yu Jeong
    Kim, Boram
    Kim, Yoon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (10) : 6722 - 6726
  • [40] Spiking Neural Network Integrated with Impact Ionization Field-Effect Transistor Neuron and a Ferroelectric Field-Effect Transistor Synapse
    Choi, Haeju
    Baek, Sungpyo
    Jung, Hanggyo
    Kang, Taeho
    Lee, Sangmin
    Jeon, Jongwook
    Jang, Byung Chul
    Lee, Sungjoo
    ADVANCED MATERIALS, 2024,