Common Fixed Point Theorems in Menger Probabilistic Quasimetric Spaces

被引:0
作者
Shaban Sedghi
Tatjana Žikić-Došenović
Nabi Shobe
机构
[1] Islamic Azad University-Babol Branch,Department of Mathematics
[2] University of Novi Sad,Faculty of Technology
[3] Islamic Azad University-Babol Branch,Department of Mathematics
来源
Fixed Point Theory and Applications | / 2009卷
关键词
Point Theorem; Probability Distribution Function; Maximal Element; Cauchy Sequence; Common Fixed Point;
D O I
暂无
中图分类号
学科分类号
摘要
We consider complete Menger probabilistic quasimetric space and prove common fixed point theorems for weakly compatible maps in this space.
引用
收藏
相关论文
共 21 条
[1]  
El Naschie MS(1998)On the uncertainty of Cantorian geometry and the two-slit experiment Chaos, Solitons & Fractals 9 517-529
[2]  
El Naschie MS(2004)A review of Chaos, Solitons & Fractals 19 209-236
[3]  
El Naschie MS(2005) infinity theory and the mass spectrum of high energy particle physics International Journal of Nonlinear Sciences and Numerical Simulation 6 95-98
[4]  
El Naschie MS(2006)On a fuzzy Kähler-like manifold which is consistent with the two slit experiment Chaos, Solitons & Fractals 27 843-849
[5]  
Chang SS(1996)The idealized quantum two-slit gedanken experiment revisited-Criticism and reinterpretation Proceedings of the American Mathematical Society 124 2367-2376
[6]  
Lee BS(1996)Generalized contraction mapping principle and differential equations in probabilistic metric spaces Mathematica Japonica 44 513-520
[7]  
Cho YJ(2005)Fixed point theorems for dissipative mappings in complete probabilistic metric spaces Fixed Point Theory and Applications 2005 257-265
[8]  
Chen YQ(1988)A contraction theorem in fuzzy metric spaces Stochastica 12 5-17
[9]  
Kang SM(1982)Contractions on probabilistic metric spaces: examples and counterexamples Monatshefte für Mathematik 93 127-140
[10]  
Jung JS(1998)Cauchy sequences in quasipseudometric spaces Indian Journal of Pure and Applied Mathematics 29 227-238