On Deciding Satisfiability by Theorem Proving with Speculative Inferences

被引:0
|
作者
Maria Paola Bonacina
Christopher A. Lynch
Leonardo de Moura
机构
[1] Università degli Studi di Verona,Dipartimento di Informatica
[2] Clarkson University,Department of Mathematics and Computer Science
[3] Microsoft Research,undefined
来源
Journal of Automated Reasoning | 2011年 / 47卷
关键词
Program checking; Theorem proving; Satisfiability modulo theories ; Combination of theories;
D O I
暂无
中图分类号
学科分类号
摘要
Applications in software verification often require determining the satisfiability of first-order formulae with respect to background theories. During development, conjectures are usually false. Therefore, it is desirable to have a theorem prover that terminates on satisfiable instances. Satisfiability Modulo Theories (SMT) solvers have proven to be highly scalable, efficient and suitable for integrated theory reasoning. Inference systems with resolution and superposition are strong at reasoning with equalities, universally quantified variables, and Horn clauses. We describe a theorem-proving method that tightly integrates superposition-based inference system and SMT solver. The combination is refutationally complete if background theory symbols only occur in ground formulae, and non-ground clauses are variable-inactive. Termination is enforced by introducing additional axioms as hypotheses. The system detects any unsoundness introduced by these speculative inferences and recovers from it.
引用
收藏
页码:161 / 189
页数:28
相关论文
共 50 条
  • [21] A study of continuous vector representations for theorem proving
    Purgal, Stanislaw
    Parsert, Julian
    Kaliszyk, Cezary
    JOURNAL OF LOGIC AND COMPUTATION, 2021, 31 (08) : 2057 - 2083
  • [22] Application of theorem proving to automated diagnoses field
    Shen, J
    Zhu, BG
    Chen, Y
    Fang, Q
    PROCEEDINGS OF THE 4TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-4, 2002, : 3202 - 3204
  • [23] Combining theorem proving and symbolic mathematical computing
    Homann, K
    Calmet, J
    INTEGRATING SYMBOLIC MATHEMATICAL COMPUTATION AND ARTIFICIAL INTELLIGENCE, 1995, 958 : 18 - 29
  • [24] Connection-driven inductive theorem proving
    Kreitz C.
    Pientka B.
    Studia Logica, 2001, 69 (2) : 293 - 326
  • [25] An approach for lifetime reliability analysis using theorem proving
    Abbasi, Naeem
    Hasan, Osman
    Tahar, Sofiene
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2014, 80 (02) : 323 - 345
  • [26] Formal Verification of Control Systems' Properties with Theorem Proving
    Araiza-Illan, Dejanira
    Eder, Kerstin
    Richards, Arthur
    2014 UKACC INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2014, : 244 - 249
  • [27] Higher-order theorem proving and its applications
    Steen, Alexander
    IT-INFORMATION TECHNOLOGY, 2019, 61 (04): : 187 - 191
  • [28] Evaluation of anonymity and confidentiality protocols using theorem proving
    Mhamdi, Tarek
    Hasan, Osman
    Tahar, Sofiene
    FORMAL METHODS IN SYSTEM DESIGN, 2015, 47 (03) : 265 - 286
  • [29] Using the VIRT programming language for automatic theorem proving
    A. I. Baranovskii
    Cybernetics and Systems Analysis, 1999, 35 : 918 - 929
  • [30] A multi-agent framework for distributed theorem proving
    Wu, CH
    EXPERT SYSTEMS WITH APPLICATIONS, 2005, 29 (03) : 554 - 565