Concerning the theory of τ-measurable operators affiliated to a semifinite von Neumann algebra

被引:0
作者
A. M. Bikchentaev
机构
[1] Kazan Federal University,
来源
Mathematical Notes | 2015年 / 98卷
关键词
von Neumann algebra; τ-measurable operator; τ-compact operator; Banach space of τ-integrable operators; Hilbert space; idempotent; hyponormal operator; semihyponormal operator; cohyponormal operator;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a von Neumann algebra of operators in a Hilbert space H, let τ be an exact normal semifinite trace on M, and let L1(M, τ) be the Banach space of τ-integrable operators. The following results are obtained. If X = X*, Y = Y* are τ-measurable operators and XY ∈ L1(M, τ), then YX ∈ L1(M, τ) and τ(XY) = τ(YX) ∈ R. In particular, if X, Y ∈ B(H)sa and XY ∈ G1, then YX ∈ G1 and tr(XY) = tr(YX) ∈ R. If X ∈ L1(M, τ), then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \left( {X*} \right) = \tau \left( X \right)$$\end{document}. Let A be a τ-measurable operator. If the operator A is τ-compact and V ∈ M is a contraction, then it follows from V* AV = A that V A = AV. We have A = A2 if and only if A = |A*||A|. This representation is also new for bounded idempotents in H. If A = A2 ∈ L1(M, τ), then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \left( A \right) = \tau \left( {\sqrt {\left| A \right|} \left| {A*} \right|\sqrt {\left| A \right|} } \right) \in {\mathbb{R}^ + }$$\end{document}. If A = A2 and A (or A*) is semihyponormal, then A is normal, thus A is a projection. If A = A3 and A is hyponormal or cohyponormal, then A is normal, and thus A = A* ∈ M is the difference of two mutually orthogonal projections (A + A2)/2 and (A2 − A)/2. If A,A2 ∈ L1(M, τ) and A = A3, then τ(A) ∈ R.
引用
收藏
页码:382 / 391
页数:9
相关论文
共 24 条
[1]  
Segal I. E.(1953)A non-commutative extension of abstract integration Ann. of Math. (2) 57 401-457
[2]  
Nelson E.(1974)Notes on non-commutative integration J. Funct. Anal 15 103-116
[3]  
Yeadon F. J.(1975)Non-commutative Math. Proc. Cambridge Philos. Soc 77 91-102
[4]  
Bikchentaev A. M.(1998)-spaces Mat. Zametki 64 185-190
[5]  
Bikchentaev A. M.(1998)On a property of Internat. J. ^Theoret. Phys. 37 571-576
[6]  
Fack T.(1986) spaces on semifinite von Neumann algebras Pacific J. Math 123 269-300
[7]  
Kosaki H.(1992)Majorization for products of measurable operators Selected Papers in K-theory, Amer. Math. Soc. Transl. (2) 154 179-187
[8]  
Bikchentaev A. M.(1993)Generalized Trans. Amer. Math. Soc 339 717-750
[9]  
Dodds P. G.(1990)-numbers of J. Operator Theory 23 3-19
[10]  
Dodds T. K.-Y.(1992)-measurable operators Integral Equations Operator Theory 15 186-226